Loading…

Frequency-dependent changes in the regional amplitude and synchronization of resting-state functional MRI in stroke

Resting-state functional magnetic resonance imaging (R-fMRI) has been intensively used to assess alterations of inter-regional functional connectivity in patients with stroke, but the regional properties of brain activity in stroke have not yet been fully investigated. Additionally, no study has exa...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2015-04, Vol.10 (4), p.e0123850-e0123850
Main Authors: Zhu, Jianfang, Jin, Yuanyuan, Wang, Kai, Zhou, Yumiao, Feng, Yue, Yu, Maihong, Jin, Xiaoqing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Resting-state functional magnetic resonance imaging (R-fMRI) has been intensively used to assess alterations of inter-regional functional connectivity in patients with stroke, but the regional properties of brain activity in stroke have not yet been fully investigated. Additionally, no study has examined a frequency effect on such regional properties in stroke patients, although this effect has been shown to play important roles in both normal brain functioning and functional abnormalities. Here we utilized R-fMRI to measure the amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo), two major methods for characterizing the regional properties of R-fMRI, in three different frequency bands (slow-5: 0.01-0.027 Hz; slow-4: 0.027-0.73 Hz; and typical band: 0.01-0.1 Hz) in 19 stroke patients and 15 healthy controls. Both the ALFF and ReHo analyses revealed changes in brain activity in a number of brain regions, particularly the parietal cortex, in stroke patients compared with healthy controls. Remarkably, the regions with changed activity as detected by the slow-5 band data were more extensive, and this finding was true for both the ALFF and ReHo analyses. These results not only confirm previous studies showing abnormality in the parietal cortex in patients with stroke, but also suggest that R-fMRI studies of stroke should take frequency effects into account when measuring intrinsic brain activity.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0123850