Loading…

Whole genome amplification and de novo assembly of single bacterial cells

Single-cell genome sequencing has the potential to allow the in-depth exploration of the vast genetic diversity found in uncultured microbes. We used the marine cyanobacterium Prochlorococcus as a model system for addressing important challenges facing high-throughput whole genome amplification (WGA...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2009-09, Vol.4 (9), p.e6864
Main Authors: Rodrigue, SĂ©bastien, Malmstrom, Rex R, Berlin, Aaron M, Birren, Bruce W, Henn, Matthew R, Chisholm, Sallie W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Single-cell genome sequencing has the potential to allow the in-depth exploration of the vast genetic diversity found in uncultured microbes. We used the marine cyanobacterium Prochlorococcus as a model system for addressing important challenges facing high-throughput whole genome amplification (WGA) and complete genome sequencing of individual cells. We describe a pipeline that enables single-cell WGA on hundreds of cells at a time while virtually eliminating non-target DNA from the reactions. We further developed a post-amplification normalization procedure that mitigates extreme variations in sequencing coverage associated with multiple displacement amplification (MDA), and demonstrated that the procedure increased sequencing efficiency and facilitated genome assembly. We report genome recovery as high as 99.6% with reference-guided assembly, and 95% with de novo assembly starting from a single cell. We also analyzed the impact of chimera formation during MDA on de novo assembly, and discuss strategies to minimize the presence of incorrectly joined regions in contigs. The methods describe in this paper will be useful for sequencing genomes of individual cells from a variety of samples.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0006864