Loading…

Base cation reservoirs in soil control the buffering capacity of lakes in forested catchments

The acidification of forest soils and surface waters and their relatively poor recovery record following reductions in atmospheric sulphur emissions is a major ongoing environmental problem, particularly in northeastern North America. The slow recovery of surface water is widely hypothesized to resu...

Full description

Saved in:
Bibliographic Details
Published in:Canadian journal of fisheries and aquatic sciences 2006-03, Vol.63 (3), p.471-474
Main Authors: Houle, Daniel, Ouimet, Rock, Couture, Suzanne, Gagnon, Christian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The acidification of forest soils and surface waters and their relatively poor recovery record following reductions in atmospheric sulphur emissions is a major ongoing environmental problem, particularly in northeastern North America. The slow recovery of surface water is widely hypothesized to result from depletion of reservoirs of base cations in soil. This is concordant with the theory that the acid-neutralizing capacity (ANC) of lakes is likely proportional to the size of the exchangeable base cation reservoirs present in surrounding watershed soils. However, data describing these linkages are still nonexistent in the literature. Here we show that lake ANC is highly predictable (r 2  = 0.75) based on the size of the exchangeable Ca 2+ reservoir in soil in 21 catchments representative of soil and lake conditions encountered in northeastern North America. This finding indirectly supports the hypothesis that the poor recovery of surface water from acidification is governed by the size of base cation reservoirs present in catchment soils. The size of the base cation reservoir in soil is thus a strong indicator of the acid–base status of both soils and surface waters.
ISSN:0706-652X
1205-7533
DOI:10.1139/f06-007