Loading…

Incremental redundancy hybrid ARQ schemes based on low-density parity-check codes

We study the throughput of hybrid automatic retransmission request (H-ARQ) schemes based on incremental redundancy (IR) over a block-fading channel. We provide an information-theoretic analysis assuming binary random coding and typical-set decoding. Then, we study the performance of low-density pari...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on communications 2004-08, Vol.52 (8), p.1311-1321
Main Authors: Sesia, S., Caire, G., Vivier, G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study the throughput of hybrid automatic retransmission request (H-ARQ) schemes based on incremental redundancy (IR) over a block-fading channel. We provide an information-theoretic analysis assuming binary random coding and typical-set decoding. Then, we study the performance of low-density parity-check (LDPC) code ensembles with iterative belief-propagation decoding, and show that, under the hypothesis of infinite-length codes, LDPCs yield almost optimal performance. Unfortunately, standard finite-length LDPC ensembles incur a considerable performance loss with respect to their infinite-length counterpart, because of their poor frame-error rate (FER) performance. In order to recover part of this loss, we propose two simple yet effective methods: using a modified LDPC ensemble designed to improve the FER; and using an outer selective-repeat protocol acting on smaller packets of information bits. Surprisingly, these apparently very different methods yield almost the same performance gain and recover a considerable fraction of the optimal throughput, thus making practical finite-length LDPC codes very attractive for data wireless communications based on IR H-ARQ schemes.
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2004.833022