Loading…

Synthesis and characterization of hyperbranched poly(urea-urethane)s based on AA and B2B monomers

Hyperbranched aromatic and aliphatic poly(urea‐urethane)s were prepared by the one‐pot method using 2,4‐toluylene diisocyanate (TDI), isophorone diisocyanate, and 2(3‐isocyanatopropyl)cyclohexyl isocyanate as AA* monomers and diethanol amine and diisopropanol amine as B2B* monomers. The characterist...

Full description

Saved in:
Bibliographic Details
Published in:Journal of polymer science. Part A, Polymer chemistry Polymer chemistry, 2004-06, Vol.42 (12), p.3062-3081
Main Authors: Abdelrehim, Mona, Komber, Hartmut, Langenwalter, Joseph, Voit, Brigitte, Bruchmann, Bernd
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hyperbranched aromatic and aliphatic poly(urea‐urethane)s were prepared by the one‐pot method using 2,4‐toluylene diisocyanate (TDI), isophorone diisocyanate, and 2(3‐isocyanatopropyl)cyclohexyl isocyanate as AA* monomers and diethanol amine and diisopropanol amine as B2B* monomers. The characteristics of the resulting polymers were very sensitive to slight changes in the reaction conditions, such as temperature, concentration, and type of catalyst used, as can be seen from the results of gel permeation chromatography and differential scanning calorimetry. The structures were analyzed in detail using 1H and 13C NMR spectroscopy. By using model compounds, the different isomeric structures of the TDI polymers were deduced, their percentages of their linear, terminal, and dendritic subunits were calculated, and their degree of branching (DB) was determined. DB values up to 70% were reached depending on the reaction conditions and stoichiometry of the monomers. The number of terminal groups decreased significantly when dibutylamine was used to stop the reaction instead of B2B*, indicating the presence of a significant number of unreacted isocyanate groups in the hyperbranched product when the polyaddition reaction was stopped. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3062–3081, 2004 Hyperbranched aromatic and aliphatic poly(urea‐urethane)s have been prepared by the one‐pot method using different diisocyanates as AA* and bishydroxyamines as B2B* monomers. Suitable conditions for largerscale synthesis of soluble products could be identified. By NMR analysis the different isomeric structures were deduced for TDI based products, percentages of linear, terminal, and dendritic subunits were calculated, and the degree of branching (DB) was determined with up to 70%.
ISSN:0887-624X
1099-0518
DOI:10.1002/pola.20154