Loading…

Equilibrium swelling and kinetics of pH-responsive hydrogels: models, experiments, and simulations

The widespread application of ionic hydrogels in a number of applications like control of microfluidic flow, development of muscle-like actuators, filtration/separation and drug delivery makes it important to properly understand these materials. Understanding hydrogel properties is also important fr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of microelectromechanical systems 2002-10, Vol.11 (5), p.544-555
Main Authors: De, S.K., Aluru, N.R., Johnson, B., Crone, W.C., Beebe, D.J., Moore, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The widespread application of ionic hydrogels in a number of applications like control of microfluidic flow, development of muscle-like actuators, filtration/separation and drug delivery makes it important to properly understand these materials. Understanding hydrogel properties is also important from the standpoint of their similarity to many biological tissues. Typically, gel size is sensitive to outer solution pH and salt concentration. In this paper, we develop models to predict the swelling/deswelling of hydrogels in buffered pH solutions. An equilibrium model has been developed to predict the degree of swelling of the hydrogel at a given pH and salt concentration in the solution. A kinetic model has been developed to predict the rate of swelling of the hydrogel when the solution pH is changed. Experiments are performed to characterize the mechanical properties of the hydrogel in different pH solutions. The degree of swelling as well as the rate of swelling of the hydrogel are also studied through experiments. The simulations are compared with experimental results and the models are found to predict the swelling/deswelling processes accurately.
ISSN:1057-7157
1941-0158
DOI:10.1109/JMEMS.2002.803281