Comparison of scintillators for positron emission mammography (PEM) systems

Positron emission mammography (PEM) has promise as an effective method for the detection of breast lesions. Perhaps the most significant design feature of a PEM system is the choice of scintillator material. In this investigation we compared three scintillators for use in PEM: NaI(Tl), gadolinium ox...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on nuclear science 2003-02, Vol.50 (1), p.42-49
Main Authors: Raylman, R.R., Majewski, S., Smith, M.F., Wojcik, R., Weisenberger, A.G., Kross, B., Popov, V., Derakhshan, J.J.
Format: Article
Language:eng
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Positron emission mammography (PEM) has promise as an effective method for the detection of breast lesions. Perhaps the most significant design feature of a PEM system is the choice of scintillator material. In this investigation we compared three scintillators for use in PEM: NaI(Tl), gadolinium oxyorthosilicate (GSO), and lutetium-gadolinium oxyorthosilicate (LGSO). The PEM systems consisted of two 30/spl times/30 arrays of pixelated scintillators (3/spl times/3/spl times/10 mm/sup 3/ for GSO and LGSO and 3/spl times/3/spl times/19 mm/sup 3/ for NaI(Tl)) coupled to arrays of square position-sensitive photomultiplier tubes. The Compton scatter fraction, system energy resolution, spatial resolution, spatial resolution uniformity, and detection sensitivity were compared. Compton scatter fractions for the systems were comparable, between 8% and 9%. The NaI(Tl) system produced the best system energy resolution (18.2%), the GSO system had the worst system energy resolution (28.7%). Spatial resolution for each system was relatively uniform across the face of the detectors, though the magnitude was dependent upon scintillator material. The NaI(Tl) system produced the lowest mean resolution (3.54/spl plusmn/0.05 mm for horizontal profiles and 3.51/spl plusmn/0.04 mm for vertical profiles), while the LGSO system produced the greatest mean spatial resolution (3.19/spl plusmn/0.04 mm for horizontal profiles and 3.20/spl plusmn/0.03 mm for vertical profiles). Detection sensitivity varied among the three systems: NaI(Tl)=217.7 c/s/kBq/ml, GSO=383.9 c/s/kBq/ml and LGSO=646.9 c/s/kBq/ml. Imaging of a simulated breast containing various sized spheres demonstrated that the LGSO system produced the greatest detectability for small spheres (as gauged by the contrast-to-noise ratio), while the NaI(Tl) system had the worst detectability. These differences were due mainly to the lower sensitivity of the NaI(Tl) system compared to the LGSO and GSO imagers. This investigation demonstrated the very important connection between scintillator selection and performance of PEM systems.
ISSN:0018-9499
1558-1578