Loading…

Resonance Raman spectroscopy of methylamine dehydrogenase from bacterium W3A1

Resonance Raman spectroscopy has been used to probe the structure of the covalently bound quinone cofactor in methylamine dehydrogenase from the bacterium W3A1. Spectra were obtained on the phenylhydrazine and 2-pyridylhydrazine derivatives of the native enzyme, on the quinone-containing subunit lab...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) 1991-01, Vol.30 (1), p.125-133
Main Authors: McIntire, William S, Bates, Jennifer L, Brown, Doreen E, Dooley, David M
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Resonance Raman spectroscopy has been used to probe the structure of the covalently bound quinone cofactor in methylamine dehydrogenase from the bacterium W3A1. Spectra were obtained on the phenylhydrazine and 2-pyridylhydrazine derivatives of the native enzyme, on the quinone-containing subunit labeled with phenylhydrazine, and on an active-site peptide also labeled with phenylhydrazine. Comparisons of these spectra to the corresponding spectra of copper-containing amine oxidase derivatives indicate that the quinones in these two classes of quinoproteins are not identical. The resonance Raman spectra of the native enzyme and small subunit have also been measured. 16O/18O exchange permitted the carbonyl modes of the quinone to be identified in the resonance Raman spectrum of oxidized methylamine dehydrogenase: a band at 1614 cm-1, together with a shoulder at 1630 cm-1, are assigned as modes containing substantial C = O stretching character. D2O/H2O exchange has pronounced effects on the resonance Raman spectrum of the oxidized enzyme, suggesting that the quinone may have numerous hydrogen bonds to the protein or that it is unusually sensitive to the local environment. Resonance Raman spectra of the isolated small subunit, and its phenylhydrazine derivative, are considerably different from the corresponding spectra of the intact protein. An attractive explanation for these observations is that the quinone cofactor in methylamine dehydrogenase from W3A1 is located at the interface between the large and small subunits, as found for the enzyme from Thiobacillus versutus [Vellieux, F. M. D., Huitema, F., Groendijk, H., Kalk, K. H., Frank, J. Jzn., Jongejan, J. A., & Duine, J. A. (1989) EMBO J. 8, 2171-2178].
ISSN:0006-2960
1520-4995
DOI:10.1021/bi00215a019