Loading…

The role of the non-magnetic material in spin pumping and magnetization dynamics in NiFe and CoFeB multilayer systems

We present a study of the effective magnetization Meff and the effective damping parameter αeff by means of ferromagnetic resonance spectroscopy on the ferromagnetic (FM) materials Ni81Fe19 (NiFe) and Co40Fe40B20 (CoFeB) in FM/Pt, FM/NM, and FM/NM/Pt systems with the non-magnetic (NM) materials Ru,...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2015-04, Vol.117 (16), p.163901
Main Authors: Ruiz-Calaforra, A., Brächer, T., Lauer, V., Pirro, P., Heinz, B., Geilen, M., Chumak, A. V., Conca, A., Leven, B., Hillebrands, B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a study of the effective magnetization Meff and the effective damping parameter αeff by means of ferromagnetic resonance spectroscopy on the ferromagnetic (FM) materials Ni81Fe19 (NiFe) and Co40Fe40B20 (CoFeB) in FM/Pt, FM/NM, and FM/NM/Pt systems with the non-magnetic (NM) materials Ru, Cr, Al, and MgO. Moreover, for NiFe layer systems, the influence of interface effects is studied by way of thickness dependent measurements of Meff and αeff. Additionally, spin pumping in NiFe/NM/Pt is investigated by means of inverse spin Hall effect (ISHE) measurements. We observe a large dependence of Meff and αeff of the NiFe films on the adjacent NM layer. While Cr and Al do not induce a large change in the magnetic properties, Ru, Pt, and MgO affect Meff and αeff in different degrees. In particular, NiFe/Ru and NiFe/Ru/Pt systems show a large perpendicular surface anisotropy and a significant enhancement of the damping. In contrast, the magnetic properties of CoFeB films do not have a large influence of the NM adjacent material and only CoFeB/Pt systems present an enhancement of αeff. However, this enhancement is much more pronounced in NiFe/Pt. By the introduction of the NM spacer material, this enhancement is reduced. Furthermore, a difference in symmetry between NiFe/NM/Pt and NiFe/NM systems in the output voltage signal from the ISHE measurements reveals the presence of spin pumping into the Pt layer in all-metallic NiFe/NM/Pt and NiFe/Pt systems.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4918909