Loading…

Proximity-induced superconductivity in crystalline Cu and Co nanowires and nanogranular Co structures

We report an experimental study of proximity effect-induced superconductivity in crystalline Cu and Co nanowires and a nanogranular Co nanowire structure in contact with a superconducting W-based floating electrode (inducer). For electrical resistance measurements up to three pairs of Pt-based volta...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2014-08, Vol.116 (7)
Main Authors: Kompaniiets, M., Dobrovolskiy, O. V., Neetzel, C., Begun, E., Porrati, F., Ensinger, W., Huth, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report an experimental study of proximity effect-induced superconductivity in crystalline Cu and Co nanowires and a nanogranular Co nanowire structure in contact with a superconducting W-based floating electrode (inducer). For electrical resistance measurements up to three pairs of Pt-based voltage leads were attached at different distances beside the inner inducer electrode, thus allowing us to probe the proximity effect over a length of 2–12 μm. Up to 30% resistance drops with respect to the normal-state value have been observed for the crystalline Co and Cu nanowires when sweeping the temperature below Tc of the inducer (5.2 K). By contrast, relative R(T) drops were found to be an order of magnitude smaller for the nanogranular Co nanowire structure. Our analysis of the resistance data shows that the superconducting proximity length in crystalline Cu and Co is about 1 μm at 2.4 K, attesting to a long-range proximity effect in the Co nanowire. Moreover, this long-range proximity effect is insusceptible to magnetic fields up to 11 T, which is indicative of spin-triplet pairing. At the same time, proximity-induced superconductivity in the nanogranular Co nanowire is strongly suppressed due to the dominating Cooper pair scattering caused by its intrinsic microstructure.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4893549