Loading…

Off-axis electron holography of ferromagnetic multilayer nanowires

We have used electron holography to investigate the local magnetic behavior of isolated ferromagnetic nanowires (NWs) in their remanent states. The NWs consisted of periodic magnetic layers of soft, high-saturation magnetization CoFeB alloys, and non-magnetic layers of Cu. All NWs were fabricated by...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2014-07, Vol.116 (2)
Main Authors: Akhtari-Zavareh, Azadeh, Carignan, L. P., Yelon, A., Ménard, D., Kasama, T., Herring, R., Dunin-Borkowski, R. E., McCartney, M. R., Kavanagh, K. L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c386t-58abdb4ad2e07cddf306efc7c635cd5be301ed96f74e20df22ee823b2bdc97c13
cites cdi_FETCH-LOGICAL-c386t-58abdb4ad2e07cddf306efc7c635cd5be301ed96f74e20df22ee823b2bdc97c13
container_end_page
container_issue 2
container_start_page
container_title Journal of applied physics
container_volume 116
creator Akhtari-Zavareh, Azadeh
Carignan, L. P.
Yelon, A.
Ménard, D.
Kasama, T.
Herring, R.
Dunin-Borkowski, R. E.
McCartney, M. R.
Kavanagh, K. L.
description We have used electron holography to investigate the local magnetic behavior of isolated ferromagnetic nanowires (NWs) in their remanent states. The NWs consisted of periodic magnetic layers of soft, high-saturation magnetization CoFeB alloys, and non-magnetic layers of Cu. All NWs were fabricated by pulsed-potential electrodeposition in nanoporous alumina membranes. The NW composition and layer thicknesses were measured using scanning transmission electron microscopy and energy dispersive spectroscopy. The magnetization of individual NWs depended upon the thicknesses of the layers and the direction of an external magnetic field, which had been applied in situ. When the CoFeB was thicker than the diameter (50 nm), magnetization was axial for all external field directions, while thinner layers could be randomized via a perpendicular field. In some cases, magnetization inside the wire was detected at an angle with respect to the axis of the wires. In thinner Cu/CoFeB (
doi_str_mv 10.1063/1.4887488
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22308968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126579441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-58abdb4ad2e07cddf306efc7c635cd5be301ed96f74e20df22ee823b2bdc97c13</originalsourceid><addsrcrecordid>eNpFkE1LAzEYhIMoWKsH_8GCJw9b87GbZI9a_IJCL3oO2eRNm7JNapKi_fduqeBhmMvwMDMI3RI8I5izBzJrpBSjztCEYNnVom3xOZpgTEktO9FdoqucNxgTIlk3QU9L52r943MFA5iSYqjWcYirpHfrQxVd5SCluNWrAMWbarsfih_0AVIVdIjfPkG-RhdODxlu_nyKPl-eP-Zv9WL5-j5_XNSGSV7qVure9o22FLAw1jqGOTgjDGetsW0PDBOwHXeiAYqtoxRAUtbT3ppOGMKm6O7Ejbl4lY0vYNYmhjD2VpSycS2X_6ldil97yEVt4j6FsZiihPJWdE1zZN2fUibFnBM4tUt-q9NBEayORyqi_o5kv93KZdQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126579441</pqid></control><display><type>article</type><title>Off-axis electron holography of ferromagnetic multilayer nanowires</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Akhtari-Zavareh, Azadeh ; Carignan, L. P. ; Yelon, A. ; Ménard, D. ; Kasama, T. ; Herring, R. ; Dunin-Borkowski, R. E. ; McCartney, M. R. ; Kavanagh, K. L.</creator><creatorcontrib>Akhtari-Zavareh, Azadeh ; Carignan, L. P. ; Yelon, A. ; Ménard, D. ; Kasama, T. ; Herring, R. ; Dunin-Borkowski, R. E. ; McCartney, M. R. ; Kavanagh, K. L.</creatorcontrib><description>We have used electron holography to investigate the local magnetic behavior of isolated ferromagnetic nanowires (NWs) in their remanent states. The NWs consisted of periodic magnetic layers of soft, high-saturation magnetization CoFeB alloys, and non-magnetic layers of Cu. All NWs were fabricated by pulsed-potential electrodeposition in nanoporous alumina membranes. The NW composition and layer thicknesses were measured using scanning transmission electron microscopy and energy dispersive spectroscopy. The magnetization of individual NWs depended upon the thicknesses of the layers and the direction of an external magnetic field, which had been applied in situ. When the CoFeB was thicker than the diameter (50 nm), magnetization was axial for all external field directions, while thinner layers could be randomized via a perpendicular field. In some cases, magnetization inside the wire was detected at an angle with respect to the axis of the wires. In thinner Cu/CoFeB (&lt;10 nm each) multilayer, magnetic field vortices were detected, associated with opposing magnetization in neighbouring layers. The measured crystallinity, compositions, and layer thicknesses of individual NWs were found to be significantly different from those predicted from calibration growths based on uniform composition NWs. In particular, a significant fraction of Cu (up to 50 at. %) was present in the CoFeB layers such that the measured magnetic induction was lower than expected. These results will be used to better understand previously measured effective anisotropy fields of similar NW arrays.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4887488</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aluminum oxide ; ANISOTROPY ; Applied physics ; BORON COMPOUNDS ; COBALT COMPOUNDS ; Composition ; COPPER ; ELECTRODEPOSITION ; Energy transmission ; FERROMAGNETIC MATERIALS ; Ferromagnetism ; HOLOGRAPHY ; IRON COMPOUNDS ; LAYERS ; MAGNETIC FIELDS ; Magnetic induction ; Magnetic properties ; Magnetic saturation ; Magnetism ; MAGNETIZATION ; MEMBRANES ; Multilayers ; NANOSCIENCE AND NANOTECHNOLOGY ; NANOWIRES ; PERIODICITY ; QUANTUM WIRES ; SATURATION ; Scanning electron microscopy ; Scanning transmission electron microscopy ; SPECTROSCOPY ; TERNARY ALLOY SYSTEMS ; THICKNESS ; TRANSMISSION ELECTRON MICROSCOPY</subject><ispartof>Journal of applied physics, 2014-07, Vol.116 (2)</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-58abdb4ad2e07cddf306efc7c635cd5be301ed96f74e20df22ee823b2bdc97c13</citedby><cites>FETCH-LOGICAL-c386t-58abdb4ad2e07cddf306efc7c635cd5be301ed96f74e20df22ee823b2bdc97c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,786,790,891,27957,27958</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22308968$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Akhtari-Zavareh, Azadeh</creatorcontrib><creatorcontrib>Carignan, L. P.</creatorcontrib><creatorcontrib>Yelon, A.</creatorcontrib><creatorcontrib>Ménard, D.</creatorcontrib><creatorcontrib>Kasama, T.</creatorcontrib><creatorcontrib>Herring, R.</creatorcontrib><creatorcontrib>Dunin-Borkowski, R. E.</creatorcontrib><creatorcontrib>McCartney, M. R.</creatorcontrib><creatorcontrib>Kavanagh, K. L.</creatorcontrib><title>Off-axis electron holography of ferromagnetic multilayer nanowires</title><title>Journal of applied physics</title><description>We have used electron holography to investigate the local magnetic behavior of isolated ferromagnetic nanowires (NWs) in their remanent states. The NWs consisted of periodic magnetic layers of soft, high-saturation magnetization CoFeB alloys, and non-magnetic layers of Cu. All NWs were fabricated by pulsed-potential electrodeposition in nanoporous alumina membranes. The NW composition and layer thicknesses were measured using scanning transmission electron microscopy and energy dispersive spectroscopy. The magnetization of individual NWs depended upon the thicknesses of the layers and the direction of an external magnetic field, which had been applied in situ. When the CoFeB was thicker than the diameter (50 nm), magnetization was axial for all external field directions, while thinner layers could be randomized via a perpendicular field. In some cases, magnetization inside the wire was detected at an angle with respect to the axis of the wires. In thinner Cu/CoFeB (&lt;10 nm each) multilayer, magnetic field vortices were detected, associated with opposing magnetization in neighbouring layers. The measured crystallinity, compositions, and layer thicknesses of individual NWs were found to be significantly different from those predicted from calibration growths based on uniform composition NWs. In particular, a significant fraction of Cu (up to 50 at. %) was present in the CoFeB layers such that the measured magnetic induction was lower than expected. These results will be used to better understand previously measured effective anisotropy fields of similar NW arrays.</description><subject>Aluminum oxide</subject><subject>ANISOTROPY</subject><subject>Applied physics</subject><subject>BORON COMPOUNDS</subject><subject>COBALT COMPOUNDS</subject><subject>Composition</subject><subject>COPPER</subject><subject>ELECTRODEPOSITION</subject><subject>Energy transmission</subject><subject>FERROMAGNETIC MATERIALS</subject><subject>Ferromagnetism</subject><subject>HOLOGRAPHY</subject><subject>IRON COMPOUNDS</subject><subject>LAYERS</subject><subject>MAGNETIC FIELDS</subject><subject>Magnetic induction</subject><subject>Magnetic properties</subject><subject>Magnetic saturation</subject><subject>Magnetism</subject><subject>MAGNETIZATION</subject><subject>MEMBRANES</subject><subject>Multilayers</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>NANOWIRES</subject><subject>PERIODICITY</subject><subject>QUANTUM WIRES</subject><subject>SATURATION</subject><subject>Scanning electron microscopy</subject><subject>Scanning transmission electron microscopy</subject><subject>SPECTROSCOPY</subject><subject>TERNARY ALLOY SYSTEMS</subject><subject>THICKNESS</subject><subject>TRANSMISSION ELECTRON MICROSCOPY</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEYhIMoWKsH_8GCJw9b87GbZI9a_IJCL3oO2eRNm7JNapKi_fduqeBhmMvwMDMI3RI8I5izBzJrpBSjztCEYNnVom3xOZpgTEktO9FdoqucNxgTIlk3QU9L52r943MFA5iSYqjWcYirpHfrQxVd5SCluNWrAMWbarsfih_0AVIVdIjfPkG-RhdODxlu_nyKPl-eP-Zv9WL5-j5_XNSGSV7qVure9o22FLAw1jqGOTgjDGetsW0PDBOwHXeiAYqtoxRAUtbT3ppOGMKm6O7Ejbl4lY0vYNYmhjD2VpSycS2X_6ldil97yEVt4j6FsZiihPJWdE1zZN2fUibFnBM4tUt-q9NBEayORyqi_o5kv93KZdQ</recordid><startdate>20140714</startdate><enddate>20140714</enddate><creator>Akhtari-Zavareh, Azadeh</creator><creator>Carignan, L. P.</creator><creator>Yelon, A.</creator><creator>Ménard, D.</creator><creator>Kasama, T.</creator><creator>Herring, R.</creator><creator>Dunin-Borkowski, R. E.</creator><creator>McCartney, M. R.</creator><creator>Kavanagh, K. L.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20140714</creationdate><title>Off-axis electron holography of ferromagnetic multilayer nanowires</title><author>Akhtari-Zavareh, Azadeh ; Carignan, L. P. ; Yelon, A. ; Ménard, D. ; Kasama, T. ; Herring, R. ; Dunin-Borkowski, R. E. ; McCartney, M. R. ; Kavanagh, K. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-58abdb4ad2e07cddf306efc7c635cd5be301ed96f74e20df22ee823b2bdc97c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aluminum oxide</topic><topic>ANISOTROPY</topic><topic>Applied physics</topic><topic>BORON COMPOUNDS</topic><topic>COBALT COMPOUNDS</topic><topic>Composition</topic><topic>COPPER</topic><topic>ELECTRODEPOSITION</topic><topic>Energy transmission</topic><topic>FERROMAGNETIC MATERIALS</topic><topic>Ferromagnetism</topic><topic>HOLOGRAPHY</topic><topic>IRON COMPOUNDS</topic><topic>LAYERS</topic><topic>MAGNETIC FIELDS</topic><topic>Magnetic induction</topic><topic>Magnetic properties</topic><topic>Magnetic saturation</topic><topic>Magnetism</topic><topic>MAGNETIZATION</topic><topic>MEMBRANES</topic><topic>Multilayers</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>NANOWIRES</topic><topic>PERIODICITY</topic><topic>QUANTUM WIRES</topic><topic>SATURATION</topic><topic>Scanning electron microscopy</topic><topic>Scanning transmission electron microscopy</topic><topic>SPECTROSCOPY</topic><topic>TERNARY ALLOY SYSTEMS</topic><topic>THICKNESS</topic><topic>TRANSMISSION ELECTRON MICROSCOPY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akhtari-Zavareh, Azadeh</creatorcontrib><creatorcontrib>Carignan, L. P.</creatorcontrib><creatorcontrib>Yelon, A.</creatorcontrib><creatorcontrib>Ménard, D.</creatorcontrib><creatorcontrib>Kasama, T.</creatorcontrib><creatorcontrib>Herring, R.</creatorcontrib><creatorcontrib>Dunin-Borkowski, R. E.</creatorcontrib><creatorcontrib>McCartney, M. R.</creatorcontrib><creatorcontrib>Kavanagh, K. L.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akhtari-Zavareh, Azadeh</au><au>Carignan, L. P.</au><au>Yelon, A.</au><au>Ménard, D.</au><au>Kasama, T.</au><au>Herring, R.</au><au>Dunin-Borkowski, R. E.</au><au>McCartney, M. R.</au><au>Kavanagh, K. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Off-axis electron holography of ferromagnetic multilayer nanowires</atitle><jtitle>Journal of applied physics</jtitle><date>2014-07-14</date><risdate>2014</risdate><volume>116</volume><issue>2</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>We have used electron holography to investigate the local magnetic behavior of isolated ferromagnetic nanowires (NWs) in their remanent states. The NWs consisted of periodic magnetic layers of soft, high-saturation magnetization CoFeB alloys, and non-magnetic layers of Cu. All NWs were fabricated by pulsed-potential electrodeposition in nanoporous alumina membranes. The NW composition and layer thicknesses were measured using scanning transmission electron microscopy and energy dispersive spectroscopy. The magnetization of individual NWs depended upon the thicknesses of the layers and the direction of an external magnetic field, which had been applied in situ. When the CoFeB was thicker than the diameter (50 nm), magnetization was axial for all external field directions, while thinner layers could be randomized via a perpendicular field. In some cases, magnetization inside the wire was detected at an angle with respect to the axis of the wires. In thinner Cu/CoFeB (&lt;10 nm each) multilayer, magnetic field vortices were detected, associated with opposing magnetization in neighbouring layers. The measured crystallinity, compositions, and layer thicknesses of individual NWs were found to be significantly different from those predicted from calibration growths based on uniform composition NWs. In particular, a significant fraction of Cu (up to 50 at. %) was present in the CoFeB layers such that the measured magnetic induction was lower than expected. These results will be used to better understand previously measured effective anisotropy fields of similar NW arrays.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4887488</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2014-07, Vol.116 (2)
issn 0021-8979
1089-7550
language eng
recordid cdi_osti_scitechconnect_22308968
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Aluminum oxide
ANISOTROPY
Applied physics
BORON COMPOUNDS
COBALT COMPOUNDS
Composition
COPPER
ELECTRODEPOSITION
Energy transmission
FERROMAGNETIC MATERIALS
Ferromagnetism
HOLOGRAPHY
IRON COMPOUNDS
LAYERS
MAGNETIC FIELDS
Magnetic induction
Magnetic properties
Magnetic saturation
Magnetism
MAGNETIZATION
MEMBRANES
Multilayers
NANOSCIENCE AND NANOTECHNOLOGY
NANOWIRES
PERIODICITY
QUANTUM WIRES
SATURATION
Scanning electron microscopy
Scanning transmission electron microscopy
SPECTROSCOPY
TERNARY ALLOY SYSTEMS
THICKNESS
TRANSMISSION ELECTRON MICROSCOPY
title Off-axis electron holography of ferromagnetic multilayer nanowires
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T17%3A50%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Off-axis%20electron%20holography%20of%20ferromagnetic%20multilayer%20nanowires&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Akhtari-Zavareh,%20Azadeh&rft.date=2014-07-14&rft.volume=116&rft.issue=2&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4887488&rft_dat=%3Cproquest_osti_%3E2126579441%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-58abdb4ad2e07cddf306efc7c635cd5be301ed96f74e20df22ee823b2bdc97c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2126579441&rft_id=info:pmid/&rfr_iscdi=true