Loading…

SCALING RELATIONS AND OVERABUNDANCE OF MASSIVE CLUSTERS AT z ≳ 1 FROM WEAK-LENSING STUDIES WITH THE HUBBLE SPACE TELESCOPE

We present weak gravitational lensing analysis of 22 high-redshift (z 1) clusters based on Hubble Space Telescope images. Most clusters in our sample provide significant lensing signals and are well detected in their reconstructed two-dimensional mass maps. Combining the current results and our prev...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2011-08, Vol.737 (2), p.jQuery1323904745926='48'-jQuery1323904745926='48'
Main Authors: JEE, M. J, DAWSON, K. S, MEYERS, J, STANFORD, S. A, BARBARY, K, BARRIENTOS, F, EISENHARDT, P, FORD, H. C, GILBANK, D. G, GLADDERS, M. D, GONZALEZ, A, HARRIS, D. W, HOEKSTRA, H, HUANG, X, LIDMAN, C, RYKOFF, E. S, RUBIN, D, SPADAFORA, A. L, PERLMUTTER, S, ROSATI, P, BRODWIN, M, SUZUKI, N, KOESTER, B, POSTMAN, M, LUBIN, L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present weak gravitational lensing analysis of 22 high-redshift (z 1) clusters based on Hubble Space Telescope images. Most clusters in our sample provide significant lensing signals and are well detected in their reconstructed two-dimensional mass maps. Combining the current results and our previous weak-lensing studies of five other high-z clusters, we compare gravitational lensing masses of these clusters with other observables. We revisit the question whether the presence of the most massive clusters in our sample is in tension with the current Delta *LCDM structure formation paradigm. We find that the lensing masses are tightly correlated with the gas temperatures and establish, for the first time, the lensing mass-temperature relation at z 1. For the power-law slope of the M-TX relation (MT Delta *a), we obtain Delta *a = 1.54 ? 0.23. This is consistent with the theoretical self-similar prediction Delta *a = 3/2 and with the results previously reported in the literature for much lower redshift samples. However, our normalization is lower than the previous results by 20%-30%, indicating that the normalization in the M-TX relation might evolve. After correcting for Eddington bias and updating the discovery area with a more conservative choice, we find that the existence of the most massive clusters in our sample still provides a tension with the current Delta *LCDM model. The combined probability of finding the four most massive clusters in this sample after the marginalization over cosmological parameters is less than 1%.
ISSN:0004-637X
1538-4357
DOI:10.1088/0004-637X/737/2/59