Loading…

Mechanistic Insights into Aldehyde Production from Electrochemical CO2 Reduction on CuAg Alloy via Operando X‑ray Measurements

CO2 electrolysis converts the greenhouse gas CO2 into valuable fuels and chemicals, such as carbon monoxide, ethylene, ethanol, etc. Currently, Cu is the only known monometallic catalyst capable of producing multicarbon products from electrochemical CO2 reduction reaction (eCO2RR), while the poor se...

Full description

Saved in:
Bibliographic Details
Published in:ACS catalysis 2023-07, Vol.13 (14), p.9379-9391
Main Authors: Qiao, Yu, Kastlunger, Georg, Davis, Ryan C., Rodriguez, Carlos Andrés Girón, Vishart, Andreas, Deng, Wanyu, Xu, Qiucheng, Li, Shaofeng, Benedek, Peter, Chen, Junjie, Schröder, Johanna, Perryman, Joseph, Lee, Dong Un, Jaramillo, Thomas F., Chorkendorff, Ib, Seger, Brian
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:CO2 electrolysis converts the greenhouse gas CO2 into valuable fuels and chemicals, such as carbon monoxide, ethylene, ethanol, etc. Currently, Cu is the only known monometallic catalyst capable of producing multicarbon products from electrochemical CO2 reduction reaction (eCO2RR), while the poor selectivity limits its further use. It has been found that introducing Ag atoms into the Cu lattice can modulate product preference. However, the synergistic effects between Cu and Ag, and thus, the catalytic performance, are strongly influenced by catalyst morphology, electrolyzer configuration, reaction conditions, etc. Operando measurements can provide explicit information on the catalyst dynamic variation during the reaction, but their operation and analysis are challenging. Herein, we prepared CuAg multiphase alloy catalysts by magnetron sputtering, which allowed for investigating the intrinsic interaction between Cu and Ag. eCO2RR performance exhibited an improved selectivity toward carbonyls at the expense of hydrogen and hydrocarbons. The partially alloyed Cu and Ag phases were confirmed by operando X-ray diffraction. By means of combining operando X-ray measurements and density functional theory (DFT) calculations, the preferred carbonyl production is attributed to the reduced electron density and compressive strain of Cu due to Ag incorporation, which leads to a deeper d-band center and therefore weakened intermediate adsorption and oxophilicity. This work provides evidence of the intrinsic structural and electronic interaction between Cu and Ag during eCO2RR. The obtained information will facilitate the design of bi/multi-phase metallic or alloy electrocatalysts.
ISSN:2155-5435
2155-5435
DOI:10.1021/acscatal.3c01009