Loading…

An Iterative CFD and Mechanical Brush Seal Model and Comparison With Experimental Results

The position of the bristles within a brush seal is dictated by the pressure distribution within the seal, which is itself influenced by the position of the bristle matrix. In order to predict mass flows, pressure capabilities, bristle displacements, stresses, and contact loads at the rotor interfac...

Full description

Saved in:
Bibliographic Details
Published in:Journal of engineering for gas turbines and power 1999-10, Vol.121 (4), p.656-662
Main Authors: Chen, L. H, Wood, P. E, Jones, T. V, Chew, J. W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The position of the bristles within a brush seal is dictated by the pressure distribution within the seal, which is itself influenced by the position of the bristle matrix. In order to predict mass flows, pressure capabilities, bristle displacements, stresses, and contact loads at the rotor interface, a technique for iterating between a CFD and a mechanical model has been developed. The iterative technique is used to model the behavior of seals with an initial build clearance, where the application of pressure causes a change in the position of the bristle matrix. Frictional effects between neighboring bristles and at the backing ring influence the behavior of the bristles and these are accounted for within the mechanical part of the model. Results are presented and discussed for seals of both initial build clearance and interference. The mathematical predictions for flow, contact loads at the rotor interface, and the nature of the bristles displacements are compared with experimental results.
ISSN:0742-4795
1528-8919
DOI:10.1115/1.2818522