Loading…

Enhanced Catalyst Durability for Bio-Based Adipic Acid Production by Atomic Layer Deposition

Atomic layer deposition (ALD) improves the durability of metal catalysts using nanoscale metal oxide coatings. However, targeted coating strategies and economic models are lacking for process-specific deactivation challenges that account for implications at scale. Herein, we apply Al2O3 ALD to Pd/Ti...

Full description

Saved in:
Bibliographic Details
Published in:Joule 2019-09, Vol.3 (9)
Main Authors: Settle, Amy E., Cleveland, Nicholas S., Farberow, Carrie A., Conklin, Davis R., Huo, Xiangchen, Dameron, Arrelaine A., Tracy, Ryon W., Sarkar, Reuben, Kautz, Elizabeth J., Devaraj, Arun, Ramasamy, Karthikeyan K., Watson, Mike J., York, Allyson M., Richards, Ryan M., Unocic, Kinga A., Beckham, Gregg T., Griffin, Michael B., Hurst, Katherine E., Tan, Eric C. D., Christensen, Steven T., Vardon, Derek R.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Atomic layer deposition (ALD) improves the durability of metal catalysts using nanoscale metal oxide coatings. However, targeted coating strategies and economic models are lacking for process-specific deactivation challenges that account for implications at scale. Herein, we apply Al2O3 ALD to Pd/TiO2 to increase durability during hydrogenation of muconic acid, a bio-based platform chemical, to adipic acid. Initial coating development and characterization are performed on the milligram scale using stop-flow ALD. Subsequently, ALD coating scale is increased by 3 orders of magnitude using fluidized bed ALD. Activity, leaching resistance, and thermal stability are evaluated at each synthesis scale. ALD-coated catalysts retain up to 2-fold greater muconic acid hydrogenation activity and undergo significantly less physical restructuring than uncoated Pd/TiO2 after high-temperature treatments, while reducing Pd leaching by over 4-fold. Techno-economic analysis for an adipic acid biorefinery supports increased ALD material costs through catalyst lifetime extension, underscoring the potential viability of this technology.
ISSN:2542-4351
2542-4351