Loading…

Improved control of electron computer-generated holographic grating groove profiles using ion beam gas-assisted etching

In a transmission electron microscope, electrons are described by matter-waves with wavelengths five orders of magnitude smaller than optical electromagnetic waves. Analogous to optical holography, electron wavefronts can be shaped using nanoscale holographic gratings. Here we demonstrate a novel, s...

Full description

Saved in:
Bibliographic Details
Published in:Applied optics (2004) 2020-02, Vol.59 (6), p.1594
Main Authors: Johnson, Cameron W, Bauer, Dylan H, McMorran, Benjamin J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In a transmission electron microscope, electrons are described by matter-waves with wavelengths five orders of magnitude smaller than optical electromagnetic waves. Analogous to optical holography, electron wavefronts can be shaped using nanoscale holographic gratings. Here we demonstrate a novel, scalable nanofabrication method for creating off-axis holographic gratings that demonstrate near ideal diffraction efficiencies for binary, sinusoidal, and blazed grating groove profiles. We show that this method can produce up to 50 µm diameter area gratings that diffract up to 68% of the transmitted electron wave into a desired diffraction order with less than 7% into any other order. Additionally, we find that the amount of inelastically scattered electrons from the material gratings remaining in the coherent diffraction orders from the gratings is negligible in the far field.
ISSN:1559-128X
2155-3165
DOI:10.1364/ao.376876