Loading…

Progress in simulating turbulent electron thermal transport in NSTX

Nonlinear simulations based on multiple NSTX discharge scenarios have progressed to help differentiate unique instability mechanisms and to validate with experimental turbulence and transport data. First nonlinear gyrokinetic simulations of microtearing turbulence in a high-beta NSTX H-mode discharg...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear fusion 2013-09, Vol.53 (9), p.93022-13
Main Authors: Guttenfelder, W., Peterson, J.L., Candy, J., Kaye, S.M., Ren, Y., Bell, R.E., Hammett, G.W., LeBlanc, B.P., Mikkelsen, D.R., Nevins, W.M., Yuh, H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nonlinear simulations based on multiple NSTX discharge scenarios have progressed to help differentiate unique instability mechanisms and to validate with experimental turbulence and transport data. First nonlinear gyrokinetic simulations of microtearing turbulence in a high-beta NSTX H-mode discharge predict experimental levels of electron thermal transport that are dominated by magnetic flutter and increase with collisionality, roughly consistent with energy confinement times in dimensionless collisionality scaling experiments. Electron temperature gradient (ETG) simulations predict significant electron thermal transport in some low- and high-beta discharges when ion scales are suppressed by E Ă— B shear. Although the predicted transport in H-modes is insensitive to variation in collisionality (inconsistent with confinement scaling), it is sensitive to variations in other parameters, particularly density gradient stabilization. In reversed shear L-mode discharges that exhibit electron internal transport barriers, ETG transport has also been shown to be suppressed nonlinearly by strong negative magnetic shear, s < 0. In many high-beta plasmas, instabilities which exhibit a stiff beta dependence characteristic of kinetic ballooning modes (KBMs) are sometimes found in the core region. However, they do not have a distinct finite beta threshold, instead transitioning gradually to a trapped electron mode (TEM) as beta is reduced to zero. Nonlinear simulations of this 'hybrid' TEM/KBM predict significant transport in all channels, with substantial contributions from compressional magnetic perturbations. As multiple instabilities are often unstable simultaneously in the same plasma discharge, even on the same flux surface, unique parametric dependencies are discussed which may be useful for distinguishing the different mechanisms experimentally.
ISSN:0029-5515
1741-4326
DOI:10.1088/0029-5515/53/9/093022