Loading…

Magnetic properties of superparamagnetic, nanocrystalline cobalt ferrite thin films deposited at low temperature

Bulk cobalt ferrite, being a hard ferrite, shows high magnetization, high resistivity and high coercivity. If thin films of cobalt ferrite can be deposited at a low enough temperature and if its coercivity can be reduced, cobalt ferrite will make a very good candidate for use as a magnetic core of a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of magnetism and magnetic materials 2018-11, Vol.465 (C), p.590-597
Main Authors: Sangeneni, Neelima, Taddei, KM, Bhat, Navakanta, Shivashankar, SA
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bulk cobalt ferrite, being a hard ferrite, shows high magnetization, high resistivity and high coercivity. If thin films of cobalt ferrite can be deposited at a low enough temperature and if its coercivity can be reduced, cobalt ferrite will make a very good candidate for use as a magnetic core of an integrated inductor in RF-CMOS ICs. Though polycrystalline and epitaxial thin films of cobalt ferrite have been made by various techniques, there are no reports of thin films of superparamagnetic cobalt ferrite. In this work, nanocrystalline cobalt ferrite thin films, which are superparamagnetic as deposited, have been prepared in the solution medium at ∼190 °C, using microwave irradiation. The as-prepared films have a saturation magnetization (MS) of 401 emu/cc and coercivity (HC) of 19 Oe at room temperature for a crystallite size of 2 nm. The cobalt ferrite powder obtained as a by-product during the same process has MS of 50 emu/g and HC of 5 Oe at room temperature, making it superparamagnetic. The as-prepared films were annealed in air at 300 °C for 5 min and 10 min. Annealing for 10 min results in an increase in crystallite size to 36 nm, MS increases from 401 emu/cc to 545 emu/cc, and HC increases from 19 Oe to 860 Oe. The change in magnetic properties can be directly associated with change in the crystallite size and degree of crystallographic inversion, as determined by neutron diffraction and deduced from X-ray photoelectron spectroscopy.
ISSN:0304-8853
1873-4766
DOI:10.1016/j.jmmm.2018.06.038