Loading…

The mechanisms of ductile rupture

One of the most confounding controversies in the ductile fracture community is the large discrepancy between predicted and experimentally observed strain-to-failure values during shear-dominant loading. Currently proposed solutions focus on better accounting for how the deviatoric stress state influ...

Full description

Saved in:
Bibliographic Details
Published in:Acta materialia 2018-12, Vol.161 (C), p.83-98
Main Authors: Noell, Philip J., Carroll, Jay D., Boyce, Brad L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:One of the most confounding controversies in the ductile fracture community is the large discrepancy between predicted and experimentally observed strain-to-failure values during shear-dominant loading. Currently proposed solutions focus on better accounting for how the deviatoric stress state influences void growth or on measuring strain at the microscale rather than the macroscale. While these approaches are useful, they do not address a significant aspect of the problem: the only rupture micromechanisms that are generally considered are void nucleation, growth, and coalescence (for tensile-dominated loading), and shear-localization and void coalescence (for shear-dominated loading). Current phenomenological models have thus focused on predicting the competition between these mechanisms based on the stress state and the strain-hardening capacity of the material. However, in the present study, we demonstrate that there are at least five other failure mechanisms. Because these have long been ignored, little is known about how all seven mechanisms interact with one another or the factors that control their competition. These questions are addressed by characterizing the fracture process in three high-purity face-centered cubic (FCC) metals of medium-to-high stacking fault energy: copper, nickel, and aluminum. These data demonstrate that, for a given stress state and material, several mechanisms frequently work together in a sequential manner to cause fracture. The selection of a failure mechanism is significantly affected by the plasticity-induced microstructural evolution that occurs before tearing begins, which can create or eliminate sites for void nucleation. At the macroscale, failure mechanisms that do not involve cracking or pore growth were observed to facilitate subsequent void growth and coalescence processes. While the focus of this study is on damage accumulation in pure metals, these results are also applicable to understanding failure in engineering alloys. [Display omitted]
ISSN:1359-6454
1873-2453
DOI:10.1016/j.actamat.2018.09.006