Loading…

Defect-Tailoring Mediated Electron-Hole Separation in Single-Unit-Cell Bi 3 O 4 Br Nanosheets for Boosting Photocatalytic Hydrogen Evolution and Nitrogen Fixation

Solar photocatalysis is a potential solution to satisfying energy demand and its resulting environmental impact. However, the low electron-hole separation efficiency in semiconductors has slowed the development of this technology. The effect of defects on electron-hole separation is not always clear...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2019-07, Vol.31 (28), p.e1807576
Main Authors: Di, Jun, Xia, Jiexiang, Chisholm, Matthew F, Zhong, Jun, Chen, Chao, Cao, Xingzhong, Dong, Fan, Chi, Zhen, Chen, Hailong, Weng, Yu-Xiang, Xiong, Jun, Yang, Shi-Ze, Li, Huaming, Liu, Zheng, Dai, Sheng
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Solar photocatalysis is a potential solution to satisfying energy demand and its resulting environmental impact. However, the low electron-hole separation efficiency in semiconductors has slowed the development of this technology. The effect of defects on electron-hole separation is not always clear. A model atomically thin structure of single-unit-cell Bi O Br nanosheets with surface defects is proposed to boost photocatalytic efficiency by simultaneously promoting bulk- and surface-charge separation. Defect-rich single-unit-cell Bi O Br displays 4.9 and 30.9 times enhanced photocatalytic hydrogen evolution and nitrogen fixation activity, respectively, than bulk Bi O Br. After the preparation of single-unit-cell structure, the bismuth defects are controlled to tune the oxygen defects. Benefiting from the unique single-unit-cell architecture and defects, the local atomic arrangement and electronic structure are tuned so as to greatly increase the charge separation efficiency and subsequently boost photocatalytic activity. This strategy provides an accessible pathway for next-generation photocatalysts.
ISSN:0935-9648
1521-4095
DOI:10.1002/adma.201807576