Loading…

Room-temperature ferromagnetism in Ni(ii)-chromia based core-shell nanoparticles: experiment and first principles calculations

We have synthesized bimagnetic core-shell nanoparticles containing a first-of-its-kind Ni(ii)-chromia nanophase shell and a well-defined, epitaxial core-shell interface. Magnetic measurements reveal a substantial coercivity of the nanoparticles and a significant exchange bias effect between the anti...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2018, Vol.20 (15), p.10396-10406
Main Authors: Hossain, M D, Mayanovic, R A, Dey, S, Sakidja, R, Benamara, M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have synthesized bimagnetic core-shell nanoparticles containing a first-of-its-kind Ni(ii)-chromia nanophase shell and a well-defined, epitaxial core-shell interface. Magnetic measurements reveal a substantial coercivity of the nanoparticles and a significant exchange bias effect between the antiferromagnetic chromia core and the ferromagnetic Ni(ii)-chromia shell at low temperatures. The ferromagnetism and a weak exchange bias effect are found to persist to room temperature in the core-shell nanoparticles of ∼57 nm average size. Our first principles Density Functional Theory (DFT) calculations confirm that the novel corundum-structured Ni(ii)-chromia phase has an equilibrium cluster-localized ferromagnetic spin configuration. In addition, the DFT-based calculations show that the Ni(ii)-chromia phase is a Mott-Hubbard insulator, with a narrowed energy band gap and increased covalent bonding due to strong hybridization between Ni 3d and O 2p levels in the upper portion of the valence band and within the band gap region. The antiferromagnetic, ferromagnetic and magnetoelectric properties of our core-shell nanoparticles make these well suited for patterned recording media and biomedical applications.
ISSN:1463-9076
1463-9084
DOI:10.1039/c7cp08597d