Loading…

Lateral and Vertical Transistors Using the AlGaN/GaN Heterostructure

Power conversion losses are endemic in all areas of electricity consumption, including motion control, lighting, air conditioning, and information technology. Si, the workhorse of the industry, has reached its material limits. Increasingly, the lateral AlGaN/GaN HEMT based on gallium nitride (GaN-on...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 2013-10, Vol.60 (10), p.3060-3066
Main Authors: Chowdhury, Srabanti, Mishra, Umesh K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Power conversion losses are endemic in all areas of electricity consumption, including motion control, lighting, air conditioning, and information technology. Si, the workhorse of the industry, has reached its material limits. Increasingly, the lateral AlGaN/GaN HEMT based on gallium nitride (GaN-on-Si) is becoming the device of choice for medium power electronics as it enables high-power conversion efficiency and reduced form factor at attractive pricing for wide market penetration. The reduced form factor enabled by high-efficiency operation at high frequency further enables significant system price reduction because of savings in bulky extensive passive elements and heat sink costs. The high-power market, however, still remains unaddressed by lateral GaN devices. The current and voltage demand for high power conversion application makes the chip area in a lateral topology so large that it becomes more difficult to manufacture. Vertical GaN devices would play a big role alongside of silicon carbide (SiC) to address the high power conversion needs. In this paper, the development, performance, and status of lateral and vertical GaN devices are discussed.
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2013.2277893