Loading…

Higgs boson mass and new physics

A bstract We discuss the lower Higgs boson mass bounds which come from the absolute stability of the Standard Model (SM) vacuum and from the Higgs inflation, as well as the prediction of the Higgs boson mass coming from the asymptotic safety of the SM. We account for the three-loop renormalization g...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics 2012-10, Vol.2012 (10), Article 140
Main Authors: Bezrukov, Fedor, Kalmykov, Mikhail Yu, Kniehl, Bernd A., Shaposhnikov, Mikhail
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A bstract We discuss the lower Higgs boson mass bounds which come from the absolute stability of the Standard Model (SM) vacuum and from the Higgs inflation, as well as the prediction of the Higgs boson mass coming from the asymptotic safety of the SM. We account for the three-loop renormalization group evolution of the couplings of the SM and for a part of the two-loop corrections that involve the QCD coupling α s to the initial conditions for their running. This is one step beyond the current state-of-the-art procedure (“one-loop matching-two-loop running”). This results in a reduction of the theoretical uncertainties in the Higgs boson mass bounds and predictions, associated with the SM physics, to 1–2 GeV. We find that with the account of existing experimental uncertainties in the mass of the top quark and α s (taken at the 2 σ level) the bound reads M H  ≥  M min (equality corresponds to the asymptotic-safety prediction), where GeV. We argue that the discovery of the SM Higgs boson in this range would be in agreement with the hypothesis of the absence of new energy scales between the Fermi and Planck scales, whereas the coincidence of M H with M min would suggest that the electroweak scale is determined by Planck physics. In order to clarify the relation between the Fermi and Planck scales a construction of an electron-positron or muon collider with a center-of-mass energy ~ (200 + 200 GeV) (Higgs and t-quark factory) would be needed.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP10(2012)140