Loading…

Direct Sub-Angstrom Imaging of a Crystal Lattice

Despite the use of electrons with wavelengths of just a few picometers, spatial resolution in a transmission electron microscope (TEM) has been limited by spherical aberration to typically around 0.15 nanometer. Individual atomic columns in a crystalline lattice can therefore only be imaged for a fe...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2004-09, Vol.305 (5691), p.1741-1741
Main Authors: Nellist, P. D., Chisholm, M. F., Dellby, N., Krivanek, O. L., Murfitt, M. F., Szilagyi, Z. S., Lupini, A. R., Borisevich, A., Sides, W. H., Pennycook, S. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Despite the use of electrons with wavelengths of just a few picometers, spatial resolution in a transmission electron microscope (TEM) has been limited by spherical aberration to typically around 0.15 nanometer. Individual atomic columns in a crystalline lattice can therefore only be imaged for a few low-order orientations, limiting the range of defects that can be imaged at atomic resolution. The recent development of spherical aberration correctors for transmission electron microscopy allows this limit to be overcome. We present direct images from an aberration-corrected scanning TEM that resolve a lattice in which the atomic columns are separated by less than 0.1 nanometer.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.1100965