Loading…

Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations?

The chronological properties of otoliths are unparalleled in the animal world, allowing accurate estimates of age and growth at both the daily and the yearly scale. Based on the successes of calcified structures as environmental proxies in other taxa, it was logical that researchers should attempt t...

Full description

Saved in:
Bibliographic Details
Published in:Canadian journal of fisheries and aquatic sciences 2001-01, Vol.58 (1), p.30-38
Main Authors: Campana, Steven E, Thorrold, Simon R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The chronological properties of otoliths are unparalleled in the animal world, allowing accurate estimates of age and growth at both the daily and the yearly scale. Based on the successes of calcified structures as environmental proxies in other taxa, it was logical that researchers should attempt to link otolith biochronologies with otolith chemistry. With the benefit of hindsight, this anticipation may have been naive. For instance, the concentrations of many elements are lower in the otolith than in corals, bivalves, seal teeth, or the other bony structures of fish, making them less than ideal for elemental analyses. Nevertheless, there is growing interest in the use of otolith chemistry as a natural tag of fish stocks. Such applications are directed at questions concerning fish populations rather than using the fish as a passive recorder of the ambient environment and do not rely upon any explicit relationship between environmental variables and otolith chemistry. The questions that can be addressed with otolith chemistry are not necessarily answerable with genetic studies, suggesting that genetic and otolith studies complement rather than compete with each other. Thus, we believe that otolith applications have the potential to revolutionize our understanding of the integrity of fish populations and the management of fish stocks.
ISSN:0706-652X
1205-7533
DOI:10.1139/f00-177