Loading…
JWST NIRSpec Spectroscopy of the Remarkable Bright Galaxy GHZ2/GLASS-z12 at Redshift 12.34
Abstract We spectroscopically confirm the M UV = −20.5 mag galaxy GHZ2/GLASS-z12 to be at redshift z = 12.34. The source was selected via NIRCam photometry in GLASS-JWST Early Release Science data, providing the first evidence of a surprising abundance of bright galaxies at z ≳ 10. The NIRSpec PRISM...
Saved in:
Published in: | The Astrophysical journal 2024-09, Vol.972 (2), p.143 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract We spectroscopically confirm the M UV = −20.5 mag galaxy GHZ2/GLASS-z12 to be at redshift z = 12.34. The source was selected via NIRCam photometry in GLASS-JWST Early Release Science data, providing the first evidence of a surprising abundance of bright galaxies at z ≳ 10. The NIRSpec PRISM spectrum shows detections of N iv , C iv , He ii , O iii , C iii , O ii , and Ne iii lines and the first detection at high redshift of the O iii Bowen fluorescence line at 3133 Å rest frame. The prominent C iv line with rest-frame equivalent width (EW) ≈ 46 Å puts GHZ2 in the category of extreme C iv emitters. GHZ2 displays UV lines with EWs that are only found in active galactic nuclei (AGNs) or composite objects at low/intermediate redshifts. The UV line-intensity ratios are compatible with both AGNs and star formation in a low-metallicity environment, with the low limit on the [Ne iv ]/[N iv ] ratio favoring a stellar origin of the ionizing photons. We discuss a possible scenario in which the high ionizing output is due to low-metallicity stars forming in a dense environment. We estimate a metallicity ≲0.1 Z / Z ⊙ , a high ionization parameter log U > −2, a N/O abundance 4–5 times the solar value, and a subsolar C/O ratio similar to the recently discovered class of nitrogen-enhanced objects. Considering its abundance patterns and the high stellar mass density (10 4 M ⊙ pc −2 ), GHZ2 is an ideal formation site for the progenitors of today's globular clusters. The remarkable brightness of GHZ2 makes it a “Rosetta stone” for understanding the physics of galaxy formation within just 360 Myr after the Big Bang. |
---|---|
ISSN: | 0004-637X 1538-4357 1538-4357 |
DOI: | 10.3847/1538-4357/ad5f88 |