Loading…

Fabrication of Three-Dimensional (3D) Copper/Carbon Nanotube Composite Film by One-Step Electrodeposition

A three-dimensional (3D) composite film containing copper nanostructures and carbon nanotubes (3DC/CNT composite film) was fabricated by one-step electrodeposition. The 3DC/CNT composite film was formed under galvanostatic conditions using a copper sulfate bath containing CNTs and polyacrylic acid w...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Electrochemical Society 2016-01, Vol.163 (14), p.D774-D779
Main Authors: Arai, Susumu, Ozawa, Masaya, Shimizu, Masahiro
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A three-dimensional (3D) composite film containing copper nanostructures and carbon nanotubes (3DC/CNT composite film) was fabricated by one-step electrodeposition. The 3DC/CNT composite film was formed under galvanostatic conditions using a copper sulfate bath containing CNTs and polyacrylic acid which acts as both a 3DC-forming and a CNT-dispersing agent. The composite film consists of thin copper sheets with thicknesses of ca. 70-80 nm and CNTs, with large interior spaces between sheets. The CNTs were homogeneously distributed inside the composite film and were fixed by the copper sheets where CNTs pierce the copper sheets. The CNT content in the composite films increased with the CNT concentration of the plating bath. The 3DC film without CNTs did not maintain its 3D spaces when the film thickness was increased due to insufficient structural strength, whereas the 3DC/CNT composite film maintained the 3D spaces despite an increase in film thickness, which suggests that the CNTs reinforce the film to maintain the 3D spaces.
ISSN:0013-4651
1945-7111
DOI:10.1149/2.0601614jes