Loading…
Wavefunction collapse driven by non-Hermitian disturbance
Abstract In the context of the measurement problem, we propose to model the interaction between a quantum particle and an ‘apparatus’ through a non-Hermitian Hamiltonian term. We simulate the time evolution of a normalized quantum state split into two spin components (via a Stern–Gerlach experiment)...
Saved in:
Published in: | Journal of physics communications 2024-07, Vol.8 (7), p.71001 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract In the context of the measurement problem, we propose to model the interaction between a quantum particle and an ‘apparatus’ through a non-Hermitian Hamiltonian term. We simulate the time evolution of a normalized quantum state split into two spin components (via a Stern–Gerlach experiment) and that undergoes a wavefunction collapse driven by a non-Hermitian Hatano-Nelson Hamiltonian. We further analyze how the strength and other parameters of the non-Hermitian perturbation influence the time-to-collapse of the wave function obtained under a Schödinger-type evolution. We finally discuss a thought experiment where manipulation of the apparatus could challenge standard quantum mechanics predictions. |
---|---|
ISSN: | 2399-6528 2399-6528 |
DOI: | 10.1088/2399-6528/ad5b37 |