Loading…

Optimizing Data Aggregation for Uplink Machine-to-Machine Communication Networks

Machine-to-machine (M2M) communication's severe power limitations challenge the interconnectivity, access management, and reliable communication of data. In densely deployed M2M networks, controlling and aggregating the generated data is critical. We propose an energy-efficient data aggregation...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on communications 2016-03, Vol.64 (3), p.1274-1290
Main Authors: Malak, Derya, Dhillon, Harpreet S., Andrews, Jeffrey G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Machine-to-machine (M2M) communication's severe power limitations challenge the interconnectivity, access management, and reliable communication of data. In densely deployed M2M networks, controlling and aggregating the generated data is critical. We propose an energy-efficient data aggregation scheme for a hierarchical M2M network. We develop a coverage probability-based optimal data aggregation scheme for M2M devices to minimize the average total energy expenditure per unit area per unit time or simply the energy density of an M2M communication network. Our analysis exposes the key tradeoffs between the energy density of the M2M network and the coverage characteristics for successive and parallel transmission schemes that can be either half-duplex or full-duplex. Comparing the rate and energy performances of the transmission models, we observe that successive mode and half-duplex parallel mode have better coverage characteristics compared to full-duplex parallel scheme. Simulation results show that the uplink coverage characteristics dominate the trend of the energy consumption for both successive and parallel schemes.
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2016.2517073