Loading…

Phosphorylation of CCAAT-enhancer binding protein by protein kinase C attenuates site-selective DNA binding

Four DNA-recombinant proteins, corresponding to the DNA-binding domain of CCAAT/enhancer binding protein (C/EBP), were phosphorylated in vitro by protein kinase C (PKC). High-performance liquid chromatography-peptide mapping of 32P-labeled C/EBP indicated the presence of three major 32P-labeled pept...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1992-09, Vol.267 (27), p.19396-19403
Main Authors: MAHONEY, CW, SHUMAN, J, MCKNIGHT, SL, CHEN, HC, HUANG, KP
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Four DNA-recombinant proteins, corresponding to the DNA-binding domain of CCAAT/enhancer binding protein (C/EBP), were phosphorylated in vitro by protein kinase C (PKC). High-performance liquid chromatography-peptide mapping of 32P-labeled C/EBP indicated the presence of three major 32P-labeled peptides: S299 (P)RDK, AKKS277 (P)VDK, and GAAGLPGPGGS248 (P)LK. Phosphorylation of C/EBP by PKC or M-kinase resulted in an attenuation of binding to a 32P-labeled CCAAT oligodeoxynucleotide. Three other truncated forms of C/EBP, C/EBP87, C/EBP87S-C, and C/EBP60, were studied to define the sites of phosphorylation affecting DNA binding. Phosphorylation of the C/EBP87, containing sites Ser299 and Ser277, and C/EBP60, containing only site Ser299, by PKC also resulted in attenuation of DNA binding. In contrast, phosphorylation of C/EBP87S-C, which retained Ser277 but had a Cys in place of Ser299, had no effect on DNA binding. Ser299 could not be phosphorylated by PKC if the protein is already bound to specific DNA. Phosphorylation of intact C/EBP from liver nuclear extract by PKC or M-kinase occurred at Ser299 and Ser277 and at an additional site, as demonstrated by immunoprecipitation and peptide mapping.
ISSN:0021-9258
1083-351X
DOI:10.1016/s0021-9258(18)41789-9