Loading…

Small-scale plant species distribution in snowbeds and its sensitivity to climate change

Alpine snowbeds are characterized by a long-lasting snow cover and low soil temperature during the growing season. Both these key abiotic factors controlling plant life in snowbeds are sensitive to anthropogenic climate change and will alter the environmental conditions in snowbeds to a considerable...

Full description

Saved in:
Bibliographic Details
Published in:Plant ecology 2009-01, Vol.200 (1), p.91-104
Main Authors: Schöb, Christian, Kammer, Peter M, Choler, Philippe, Veit, Heinz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Alpine snowbeds are characterized by a long-lasting snow cover and low soil temperature during the growing season. Both these key abiotic factors controlling plant life in snowbeds are sensitive to anthropogenic climate change and will alter the environmental conditions in snowbeds to a considerable extent until the end of this century. In order to name winners and losers of climate change among the plant species inhabiting snowbeds, we analyzed the small-scale species distribution along the snowmelt and soil temperature gradients within alpine snowbeds in the Swiss Alps. The results show that the date of snowmelt and soil temperature were relevant abiotic factors for small-scale vegetation patterns within alpine snowbed communities. Species richness in snowbeds was reduced to about 50% along the environmental gradients towards later snowmelt date or lower daily maximum temperature. Furthermore, the occurrence pattern of the species along the snowmelt gradient allowed the establishment of five species categories with different predictions of their distribution in a warmer world. The dominants increased their relative cover with later snowmelt date and will, therefore, lose abundance due to climate change, but resist complete disappearance from the snowbeds. The indifferents and the transients increased in species number and relative cover with higher temperature and will profit from climate warming. The snowbed specialists will be the most suffering species due to the loss of their habitats as a consequence of earlier snowmelt dates in the future and will be replaced by the avoiders of late-snowmelt sites. These forthcoming profiteers will take advantage from an increasing number of suitable habitats due to an earlier start of the growing season and increased temperature. Therefore, the characteristic snowbed vegetation will change to a vegetation unit dominated by alpine grassland species. The study highlights the vulnerability of the established snowbed vegetation to climate change and requires further studies particularly about the role of biotic interactions in the predicted invasion and replacement process.
ISSN:1385-0237
1573-5052
DOI:10.1007/s11258-008-9435-9