Loading…

Spatio-temporal segmentation for the similarity measurement of deforming meshes

Although there have been a large body of works on computing the similarity of static shapes, similarity judgments on deforming meshes are not studied well. In this study, we investigate a similarity measurement method for comparing two deforming meshes. Based on the degree of deformation, we first b...

Full description

Saved in:
Bibliographic Details
Published in:The Visual computer 2016-02, Vol.32 (2), p.243-256
Main Authors: Luo, Guoliang, Cordier, Frederic, Seo, Hyewon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Although there have been a large body of works on computing the similarity of static shapes, similarity judgments on deforming meshes are not studied well. In this study, we investigate a similarity measurement method for comparing two deforming meshes. Based on the degree of deformation, we first binarily label each triangle within each frame as either ‘deformed’ or ‘rigid’, then merge the ‘deformed’ triangles in both spatial and temporal domains for the segmentation. The segmentation results are encoded in a form of evolving graph, with an aim of obtaining a compact representation of the motion of the mesh. Finally, we formulate the similarity measurement as a sequence matching problem: after clustering similar graphs and assigning each of the graphs with the cluster labels, each deforming mesh is represented with a sequence of labels. Then, we apply a sequence alignment algorithm to compute the locally optimal alignment between the two label sequences, and to compute the similarity by normalizing the alignment score. The experimental results over several datasets show that the similarities of animation data can be captured correctly using our approach. This may be significant, as it solves a problem that cannot be handled by current approaches.
ISSN:0178-2789
1432-2315
1432-8726
DOI:10.1007/s00371-015-1178-8