Loading…
Quantitative Visualization of Thermally Enhanced Perpendicular Shape Anisotropy STT-MRAM Nanopillars
Perpendicular shape anisotropy (PSA) offers a practical solution to downscale spin-transfer torque magnetoresistive random-access memory (STT-MRAM) beyond the sub-20 nm technology node while retaining thermal stability. However, our understanding of the thermomagnetic behavior of PSA-STT-MRAM is oft...
Saved in:
Published in: | Nano letters 2022-05, Vol.22 (10), p.4000-4005 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Perpendicular shape anisotropy (PSA) offers a practical solution to downscale spin-transfer torque magnetoresistive random-access memory (STT-MRAM) beyond the sub-20 nm technology node while retaining thermal stability. However, our understanding of the thermomagnetic behavior of PSA-STT-MRAM is often indirect, relying on magnetoresistance measurements and micromagnetic modeling. Here, the magnetism of a NiFe PSA-STT-MRAM nanopillar is investigated using off-axis electron holography, providing spatially resolved magnetic information as a function of temperature. Magnetic induction maps reveal the micromagnetic configuration of the NiFe storage layer (∼60 nm high, ≤20 nm diameter), confirming the PSA induced by its 3:1 aspect ratio. In situ heating demonstrates that the PSA of the storage layer is maintained up to at least 250 °C, and direct quantitative measurements reveal a moderate decrease of magnetic induction. Hence, this study shows explicitly that PSA provides significant stability in STT-MRAM applications that require reliable performance over a range of operating temperatures. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.2c00597 |