Loading…

Flexible papers derived from polypyrrole deposited cellulose nanofibers for enhanced electromagnetic interference shielding in gigahertz frequencies

An array of highly conductive, lightweight and flexible cellulose nanopapers as effective attenuators of electromagnetic radiations within 8.2–12.4 GHz (X band) were formulated via in situ polymerization of pyrrole monomers on to cellulose nanofibers (CNFs). It is quite obvious that the free hydroxy...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied polymer science 2021-04, Vol.138 (16), p.1-n/a
Main Authors: Gopakumar, Deepu A., Pai, Avinash R., Pottathara, Yasir Beeran, Pasquini, Daniel, Morais, Luís Carlos, Khalil H.P.S., Abdul, Nzihou, Ange, Thomas, Sabu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An array of highly conductive, lightweight and flexible cellulose nanopapers as effective attenuators of electromagnetic radiations within 8.2–12.4 GHz (X band) were formulated via in situ polymerization of pyrrole monomers on to cellulose nanofibers (CNFs). It is quite obvious that the free hydroxyl groups on the surface of CNFs facilitate the formation of intense intermolecular hydrogen bonding with PPy which is envisaged for its excellent electromagnetic shielding performance with an average shielding effectiveness of ca. –22 dB (>99% attenuation) at 8.2 GHz for a paper having 1 mm thickness. The fabricated papers displayed a predominant absorption mechanism (ca. 89%) rather than reflection (ca. 11%) for efficiently attenuating electromagnetic radiations, which has a considerable importance in the modern telecommunication sector. Thus, the designed PPy/CNF papers would replace the conventional metal‐based shields and pave way for the development of green microwave attenuators functioning via a strong absorption mechanism. The PPy/CNF nanopapers exhibited a DC conductivity of 0.21 S/cm, a prime requisite for the development of highly efficient electromagnetic shields. Undoubtedly, such nanopapers can be employed in wide range of applications such as electrodes for supercapacitors and other freestanding flexible paper‐based devices.
ISSN:0021-8995
1097-4628
DOI:10.1002/app.50262