Loading…

Near-resonant instability of geostrophic modes: beyond Greenspan's theorem

We explore the near-resonant interaction of inertial waves with geostrophic modes in rotating fluids via numerical and theoretical analysis. When a single inertial wave is imposed, we find that some geostrophic modes are unstable above a threshold value of the Rossby number $kRo$ based on the wavenu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2020-10, Vol.900, Article R2
Main Authors: Le Reun, T., Gallet, B., Favier, B., Le Bars, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We explore the near-resonant interaction of inertial waves with geostrophic modes in rotating fluids via numerical and theoretical analysis. When a single inertial wave is imposed, we find that some geostrophic modes are unstable above a threshold value of the Rossby number $kRo$ based on the wavenumber and wave amplitude. We show this instability to be caused by triadic interaction involving two inertial waves and a geostrophic mode such that the sum of their eigenfrequencies is non-zero. We derive theoretical scalings for the growth rate of this near-resonant instability. The growth rate scaled by the global rotation rate is proportional to $(kRo)^2$ at low $kRo$ and transitions to a $kRo$ scaling for larger $kRo$. These scalings are in excellent agreement with direct numerical simulations. This instability could explain recent experimental observations of geostrophic instability driven by waves.
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2020.454