Loading…

Monitoring geothermal reservoir developments with the Controlled-Source Electro-Magnetic method — A calibration study on the Reykjanes geothermal field

Surface geophysical monitoring techniques are important tools for geothermal reservoir management as they provide unique information on the reservoir development away from boreholes. For magmatic environments, electromagnetic (EM) methods are attractive monitoring tools as they allow to characterize...

Full description

Saved in:
Bibliographic Details
Published in:Journal of volcanology and geothermal research 2020-02, Vol.391, p.106437, Article 106437
Main Authors: Darnet, M., Wawrzyniak, P., Coppo, N., Nielsson, S., Schill, E., Fridleifsson, G.Ó.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Surface geophysical monitoring techniques are important tools for geothermal reservoir management as they provide unique information on the reservoir development away from boreholes. For magmatic environments, electromagnetic (EM) methods are attractive monitoring tools as they allow to characterize the reservoir and hence potentially monitor changes related to fluid injection/production. Indeed, the electrical resistivity of reservoir rocks is highly dependent on the volume, chemistry and phase of the in-situ geothermal brine (e.g. liquid, vapor, supercritical). Passive EM techniques (e.g. magnetotellurics or MT) are traditionally used for geothermal exploration and a few recent studies have demonstrated its potential for monitoring reservoir development. One of the main challenges is though the presence of cultural noise and/or variability of the Earth magnetic field that can obfuscate the EM signals of interest. We have investigated the benefits and drawbacks of active EM surveying (Controlled-Source EM or CSEM) to tackle this challenge, first with a synthetic study and subsequently with an actual time-lapse survey acquired in 2016 and 2017 over the Reykjanes geothermal field in Iceland before (baseline) and after (monitor) the thermal stimulation of the supercritical RN-15/IDDP-2 geothermal well. The synthetic study showed that for geothermal fields having a resistivity structure similar to the Reykjanes field (i.e. a conductive caprock overlying a more resistive higher temperature reservoir), CSEM and MT measurements can both detect resistivity changes within the deep resistive reservoir, provided that measurement errors are small. Variations in many survey parameters (e.g. errors in receiver position/orientation, differences in recording devices, variations of near surface conditions, external noise) can create significant time-lapse CSEM measurement errors. Our actual time-lapse survey showed that when similar CSEM equipment is used during the baseline and monitor surveys and systematically d-GPS positioned, the remaining key parameter controlling the survey repeatability is the level of external noise. Since the influence of external noise on CSEM data can be artificially reduced (e.g. by increasing the transmitter dipolar moment), it offers the possibility to adapt the survey design to increase the chance of detecting the time-lapse signals of interest. On the contrary, little control is possible on the MT signal to noise ratio and hence repeatabi
ISSN:0377-0273
1872-6097
DOI:10.1016/j.jvolgeores.2018.08.015