Loading…

Comparative modelling of laboratory experiments for the hydro-mechanical behaviour of a compacted bentonite–sand mixture

A comparative modelling exercise involving several independent teams from the DECOVALEX-2015 project is presented in this paper. The exercise is based on various laboratory experiments that have been carried out in the framework of a French research programme called SEALEX and conducted by the IRSN....

Full description

Saved in:
Bibliographic Details
Published in:Environmental earth sciences 2016-10, Vol.75 (19), p.1-18, Article 1311
Main Authors: Millard, A., Mokni, N., Barnichon, J. D., Thatcher, K. E., Bond, A. E., Fraser-Harris, A., Mc Dermott, C., Blaheta, R., Michalec, Z., Hasal, M., Nguyen, T. S., Nasir, O., Fedors, R., Yi, H., Kolditz, O.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A comparative modelling exercise involving several independent teams from the DECOVALEX-2015 project is presented in this paper. The exercise is based on various laboratory experiments that have been carried out in the framework of a French research programme called SEALEX and conducted by the IRSN. The programme focuses on the long-term performance of swelling clay-based sealing systems that provide an important contribution to the safety of underground nuclear waste disposal facilities. A number of materials are being considered in the sealing systems; the current work focuses on a 70/30 MX80 bentonite–sand mixture compacted at dry densities between 1.67 and 1.97 Mg/m 3 . The improved understanding of the full set of hydro-mechanical processes affecting the behaviour of an in situ sealing system requires both experiments ranging from small-scale laboratory tests to full-scale field emplacement studies and coupled hydro-mechanical models that are able to explain the observations in the experiments. The approach was to build models of increasing complexity starting for the simplest laboratory experiments and building towards the full-scale in situ experiments. Following this approach, two sets of small-scale laboratory experiments have been performed and modelled. The first set of experiments involves characterizing the hydro-mechanical behaviour of the bentonite–sand mixture by means of (1) water retention tests under both constant volume and free swell conditions, (2) infiltration test under constant volume condition, and (3) swelling and compression tests under suction control conditions. The second, more complex, experiment is a 1/10th scale mock-up of a larger-scale in situ experiment. Modelling of the full-scale experiment is described in a companion paper. A number of independent teams have worked towards modelling these experiments using different conceptual models, codes, and input parameters. Their results are compared and discussed. This exercise has enabled an improved modelling of the bentonite–sand mixture behaviour, in particular accounting for the dependence of its retention curve on the dry density. Moreover, it has shown the importance of the technological voids on the short-term behaviour of the sealing system.
ISSN:1866-6280
1866-6299
DOI:10.1007/s12665-016-6118-z