Dissecting holographic conductivities

A bstract The DC thermoelectric conductivities of holographic systems in which translational symmetry is broken can be efficiently computed in terms of the near-horizon data of the dual black hole. By calculating the frequency dependent conductivities to the first subleading order in the momentum re...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics 2015-09, Vol.2015 (9), p.1-25, Article 90
Main Authors: Davison, Richard A., Goutéraux, Blaise
Format: Article
Language:eng
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A bstract The DC thermoelectric conductivities of holographic systems in which translational symmetry is broken can be efficiently computed in terms of the near-horizon data of the dual black hole. By calculating the frequency dependent conductivities to the first subleading order in the momentum relaxation rate, we give a physical explanation for these conductivities in the simplest such example, in the limit of slow momentum relaxation. Specifically, we decompose each conductivity into the sum of a coherent contribution due to momentum relaxation and an incoherent contribution, due to intrinsic current relaxation. This decomposition is different from those previously proposed, and is consistent with the known hydrodynamic properties in the translationally invariant limit. This is the first step towards constructing a consistent theory of charged hydrodynamics with slow momentum relaxation.
ISSN:1029-8479
1126-6708
1029-8479