Loading…

Advances in understanding obligate biotrophy in rust fungi

Rust fungi (Pucciniales) are the largest group of plant pathogens and represent one of the most devastating threats to agricultural crops worldwide. Despite the economic importance of these highly specialized pathogens, many aspects of their biology remain obscure, largely because rust fungi are obl...

Full description

Saved in:
Bibliographic Details
Published in:The New phytologist 2019-05, Vol.222 (3), p.1190-1206
Main Authors: Lorrain, Cécile, dos Santos, Karen Cristine Gonçalves, Germain, Hugo, Hecker, Arnaud, Duplessis, Sébastien
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Rust fungi (Pucciniales) are the largest group of plant pathogens and represent one of the most devastating threats to agricultural crops worldwide. Despite the economic importance of these highly specialized pathogens, many aspects of their biology remain obscure, largely because rust fungi are obligate biotrophs. The rise of genomics and advances in high-throughput sequencing technology have presented new options for identifying candidate effector genes involved in pathogenicity mechanisms of rust fungi. Transcriptome analysis and integrated bioinformatics tools have led to the identification of key genetic determinants of host susceptibility to infection by rusts. Thousands of genes encoding secreted proteins highly expressed during host infection have been reported for different rust species, which represents significant potential towards understanding rust effector function. Recent high-throughput in planta expression screen approaches (effectoromics) have pushed the field ahead even further towards predicting high-priority effectors and identifying avirulence genes. These new insights into rust effector biology promise to inform future research and spur the development of effective and sustainable strategies for managing rust diseases.
ISSN:0028-646X
1469-8137
DOI:10.1111/nph.15641