Loading…

Hydrodynamic study of a monolith-type reactor for intensification of gas-liquid applications

Two-phase monolith-type reactors allow intensified heat and mass transfer rates, but often suffer from fluid maldistribution and undesired flow regimes in channels. A cold-flow monolith reactor (0.1 m diameter, 84 channels) is used here to assess liquid distribution and flow regimes at various air a...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering and processing 2017-12, Vol.122, p.277-287
Main Authors: Devatine, Audrey, Chaumat, Hélène, Guillaume, Simon, Tati Tchibouanga, Bismath, Durán Martínez, Freddy, Julcour, Carine, Billet, Anne-Marie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Two-phase monolith-type reactors allow intensified heat and mass transfer rates, but often suffer from fluid maldistribution and undesired flow regimes in channels. A cold-flow monolith reactor (0.1 m diameter, 84 channels) is used here to assess liquid distribution and flow regimes at various air and water velocities: resistive probes give an insight of the flow patterns within 5 representative channels located at different radial positions, showing that regime transition to Taylor flow occurs in these channels simultaneously at lower gas and liquid superficial velocities than predicted by single capillary studies (namely uL and uG < 0.1 m s−1). nA full mapping of the partial liquid flow rates in the monolith channels is derived by a gravimetric method via specifically designed collectors. In the identified Taylor flow domain, liquid distribution exhibits a W-shaped profile with marked peaks at low liquid velocity (uL = 0.04 m s−1). Increasing the liquid flow rate significantly (uL = 0.1 m s−1) smooths liquid distribution, reducing the maldistribution factor by half. Gas velocity also helps phase uniformity but to a smaller extent. It is estimated that even higher fluid velocities (at least tripled) would be required to feed all channels equally. Adding stack of distribution plates of variable cell density at the top of the monolith does not enhance the quality of the liquid distribution, except at low liquid velocity.
ISSN:0255-2701
DOI:10.1016/j.cep.2017.10.015