Loading…

The gold/ampicillin interface at the atomic scale

In the fight against antibiotic resistance, gold nanoparticles (AuNP) with antibiotics grafted on their surfaces have been found to be potent agents. Ampicillin-conjugated AuNPs have been thus reported to overcome highly ampicillin-resistant bacteria. However, the structure at the atomic scale of th...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale 2015-09, Vol.7 (34), p.14515-14524
Main Authors: Tarrat, N, Benoit, M, Giraud, M, Ponchet, A, Casanove, M J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the fight against antibiotic resistance, gold nanoparticles (AuNP) with antibiotics grafted on their surfaces have been found to be potent agents. Ampicillin-conjugated AuNPs have been thus reported to overcome highly ampicillin-resistant bacteria. However, the structure at the atomic scale of these hybrid systems remains misunderstood. In this paper, the structure of the interface between an ampicillin molecule AMP and three flat gold facets Au(111), Au(110) and Au(100) has been investigated with numerical simulations (dispersion-corrected DFT). Adsorption energies, bond distances and electron densities indicate that the adsorption of AMP on these facets goes through multiple partially covalent bonding. The stability of the AuNP/AMP nanoconjugates is explained by large adsorption energies and their potential antibacterial activity is discussed on the basis of the constrained spatial orientation of the grafted antibiotic.
ISSN:2040-3364
2040-3372
DOI:10.1039/c5nr03318g