Loading…

Accuracy of spatial localization depending on head posture in a perturbed gravitoinertial force field

Spatial orientation is crucial when subjects have to accurately reach memorized visual targets. In previous studies modified gravitoinertial force fields were used to affect the accuracy of pointing movements in complete darkness without visual feedback of the moving limb. Target mislocalization was...

Full description

Saved in:
Bibliographic Details
Published in:Experimental brain research 2005-03, Vol.161 (4), p.432-440
Main Authors: PRIEUR, J.-M, BOURDIN, C, VERCHER, J.-L, SARES, F, BLOUIN, J, GAUTHIER, G. M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Spatial orientation is crucial when subjects have to accurately reach memorized visual targets. In previous studies modified gravitoinertial force fields were used to affect the accuracy of pointing movements in complete darkness without visual feedback of the moving limb. Target mislocalization was put forward as one hypothesis to explain this decrease in accuracy of pointing movements. The aim of this study was to test this hypothesis by determining the accuracy of spatial localization of memorized visual targets in a perturbed gravitoinertial force field. As head orientation is involved in localization tasks and carrying relevant sensory systems (visual, vestibular and neck muscle proprioceptive), we also tested the effect of head posture on the accuracy of localization. Subjects (n=10) were seated off-axis on a rotating platform (120 degrees s(-1)) in complete darkness with the head fixed (head-fixed session) or free to move (head-free session). They were required to report verbally the egocentric spatial localization of visual memorized targets. They gave the perceived target location in direction (i.e. left or right) and in amplitude (in centimeters) relative to the direction they thought to be straight ahead. Results showed that the accuracy of visual localization decreased when subjects were exposed to inertial forces. Moreover, subjects localized the memorized visual targets more to the right than their actual position, that was in the direction of the inertial forces. With further analysis, it appeared that this shift of localization was concomitant with a shift of the visual straight ahead (VSA) in the opposite direction. Thus, the modified gravitoinertial force field led to a modification in the orientation of the egocentric reference frame. Furthermore, this shift of localization increased when the head was free to move while the head was tilted in roll toward the center of rotation of the platform and turned in yaw in the same direction. It is concluded that the orientation of the egocentric reference frame was influenced by the gravitoinertial vector.
ISSN:0014-4819
1432-1106
DOI:10.1007/s00221-004-2087-7