Loading…

Influence of bending resistance on the dynamics of a spherical capsule in shear flow

The objective of the paper is to study the effect of wall bending resistance on the motion of an initially spherical capsule freely suspended in shear flow. We consider a capsule with a given thickness made of a three-dimensional homogeneous elastic material. A numerical method is used to model the...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 2015-05, Vol.27 (5)
Main Authors: Dupont, C., Salsac, A.-V., Barthès-Biesel, D., Vidrascu, M., Le Tallec, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The objective of the paper is to study the effect of wall bending resistance on the motion of an initially spherical capsule freely suspended in shear flow. We consider a capsule with a given thickness made of a three-dimensional homogeneous elastic material. A numerical method is used to model the fluid-structure interactions coupling a boundary integral method for the fluids with a shell finite element method for the capsule envelope. For a given wall material, the capsule deformability strongly decreases when the wall bending resistance increases. But, if one expresses the same results as a function of the two-dimensional mechanical properties of the mid-surface, which is how the capsule wall is modeled in the thin-shell model, the capsule deformed shape is identical to the one predicted for a capsule devoid of bending resistance. The bending rigidity is found to have a negligible influence on the overall deformation of an initially spherical capsule, which therefore depends only on the elastic stretching of the mid-surface. Still, the bending resistance of the wall must be accounted for to model the buckling phenomenon, which is observed locally at low flow strength. We show that the wrinkle wavelength is only a function of the wall bending resistance and provide the correlation law. Such results can then be used to infer values of the bending modulus and wall thickness from experiments on spherical capsules in simple shear flow.
ISSN:1070-6631
1089-7666
DOI:10.1063/1.4921247