Loading…

Revised phosphate–water fractionation equation reassessing paleotemperatures derived from biogenic apatite

Oxygen isotopes of biogenic apatite have been widely used to reassess anomalous temperatures inferred from oxygen isotope ratios of ancient biogenic calcite, more prone to diagenetic alteration. However, recent studies have highlighted that oxygen isotope ratios of biogenic apatite differ dependent...

Full description

Saved in:
Bibliographic Details
Published in:Earth and planetary science letters 2010-09, Vol.298 (1), p.135-142
Main Authors: Pucéat, E., Joachimski, M.M., Bouilloux, A., Monna, F., Bonin, A., Motreuil, S., Morinière, P., Hénard, S., Mourin, J., Dera, G., Quesne, D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Oxygen isotopes of biogenic apatite have been widely used to reassess anomalous temperatures inferred from oxygen isotope ratios of ancient biogenic calcite, more prone to diagenetic alteration. However, recent studies have highlighted that oxygen isotope ratios of biogenic apatite differ dependent on used analytical techniques. This questions the applicability of the phosphate–water fractionation equations established over 25 years ago using earlier analytical techniques to more recently acquired data. In this work we present a new phosphate–water oxygen isotope fractionation equation based on oxygen isotopes determined on fish raised in aquariums at controlled temperature and with monitored water oxygen isotope composition. The new equation reveals a similar slope, but an offset of about + 2‰ to the earlier published equations. This work has major implications for paleoclimatic reconstructions using oxygen isotopes of biogenic apatite since calculated temperatures have been underestimated by about 4 to 8 °C depending on applied techniques and standardization of the analyses.
ISSN:0012-821X
1385-013X
DOI:10.1016/j.epsl.2010.07.034