Loading…

Modulation of heteronymous reflexes from ankle dorsiflexors to hamstring muscles during human walking

In 16 human subjects, stimulation of the common peroneal nerve (CPN) was applied during walking and standing. The effect of the stimulation was evaluated from the rectified and averaged biceps femoris (BF) electromyographic (EMG) activity. In the swing phase of walking, the CPN stimulation evoked a...

Full description

Saved in:
Bibliographic Details
Published in:Experimental brain research 2002-02, Vol.142 (3), p.402-408
Main Authors: MARCHAND-PAUVERT, V, NIELSEN, J. B
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In 16 human subjects, stimulation of the common peroneal nerve (CPN) was applied during walking and standing. The effect of the stimulation was evaluated from the rectified and averaged biceps femoris (BF) electromyographic (EMG) activity. In the swing phase of walking, the CPN stimulation evoked a suppression in the BF EMG in 12 of the subjects. In the early stance phase, the suppression was replaced by facilitation at a similar latency in 9 of the subjects. Of the other 3 subjects, in whom a suppression was observed during swing, a decrease in the suppression was observed in the stance phase in two of them. During a voluntary co-contraction of BF and tibialis anterior while standing, a suppression similar to that observed in the swing phase was observed. The thresholds of the suppression and facilitation were identical, suggesting that afferents of similar diameter were responsible. Cutaneous stimuli, which mimicked the sensation evoked by the CPN stimulation, but without activation of muscle afferents, did not produce similar effects in the BF EMG activity. It is suggested that the observed response and reflex reversal may reflect opening of an excitatory group I pathway in the early stance phase of walking with a concomitant shut-down of heteronymous group I inhibition.
ISSN:0014-4819
1432-1106
DOI:10.1007/s00221-001-0942-3