Loading…

Fluorescent Biomembrane Probe for Ratiometric Detection of Apoptosis

Herein, we developed the first ratiometric fluorescent probe for apoptosis detection. This probe incorporates selectively into the outer leaflet of the cell plasma membrane and senses the loss of the plasma membrane asymmetry occurring during the early steps of apoptosis. The high specificity to the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2007-02, Vol.129 (7), p.2187-2193
Main Authors: Shynkar, Vasyl V, Klymchenko, Andrey S, Kunzelmann, Corinne, Duportail, Guy, Muller, Christian D, Demchenko, Alexander P, Freyssinet, Jean-Marie, Mely, Yves
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Herein, we developed the first ratiometric fluorescent probe for apoptosis detection. This probe incorporates selectively into the outer leaflet of the cell plasma membrane and senses the loss of the plasma membrane asymmetry occurring during the early steps of apoptosis. The high specificity to the plasma membranes was achieved by introduction into the probe of a membrane anchor, composed of a zwitterionic group and a long (dodecyl) hydrophobic tail. The fluorescence reporter of this probe is 4‘-(diethylamino)-3-hydroxyflavone, which exhibits excited-state intramolecular proton transfer (ESIPT), resulting in two-band emission highly sensitive to the lipid composition of the biomembranes. Fluorescence spectroscopy, flow cytometry, and microscopy measurements show that the ratio of the two emission bands of the probe changes dramatically in response to apoptosis. This response reflects the changes in the lipid composition of the outer leaflet of the cell plasma membrane because of the exposure of the anionic phospholipids from the inner leaflet at the early steps of apoptosis. Being ratiometric, the response of the new probe can be easily quantified on an absolute scale. This allows monitoring by laser scanning confocal microscopy the degree and spatial distribution of the apoptotic changes at the cell plasma membranes, a feature that can be hardly achieved with the commonly used fluorescently labeled annexin V assay.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja068008h