Loading…

Disposable impedance sensors based on novel hybrid MoS.sub.2 nanosheets and microparticles to detect Escherichia Coli DNA

The rapid and accurate detection of pathogenic bacteria is essential for food safety and public health. Conventional detection techniques, such as nucleic acid sequence-based amplification and polymerase chain reaction, are time-consuming and require specialized equipment and trained personnel. Here...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2024-02, Vol.19 (2), p.e0299272
Main Authors: Nguyen, Tien Ngoc Phuc, Nguyen, Son Hai, Tran, Mai Thi
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The rapid and accurate detection of pathogenic bacteria is essential for food safety and public health. Conventional detection techniques, such as nucleic acid sequence-based amplification and polymerase chain reaction, are time-consuming and require specialized equipment and trained personnel. Here, we present quick, disposable impedance sensors based on the novel hybrid MoS.sub.2 nanomaterial for detecting Escherichia coli DNA. Our results indicate that the proposed sensors operate linearly between 10.sup.- 20 and 10.sup.-15 M concentrations, achieving an impressive detection limit of 10.sup.-20 M with the highest sensitivity observed at a 0.325 nM probe concentration sensor. Furthermore, the electrochemical impedance spectroscopy biosensors exhibited potential selectivity for Escherichia coli DNA over Bacillus subtilis and Vibrio proteolyticus DNA sequences. The findings offer a promising avenue for efficient and precise DNA detection, with potential implications for broader biotechnology and medical diagnostics applications.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0299272