Loading…

Cytotoxic, Thrombolytic and Antibacterial Evaluation of Synthesized Substituted and Un-Substituted Selenium-N-Heterocyclic Carbene Adducts

Alkyl-substituted azolium salts (1-8) and their Se-N-heterocyclic carbene (Se-N-Het-C) adducts (9-12) were obtained in very reasonable yields. All synthesized azolium salts and their Se-N-Het-C adducts were characterized by different spectroscopic techniques such as FT-IR, 1HNMR, 13CNMR, and element...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Chemical Society of Pakistan 2023-02, Vol.45 (1), p.44-44
Main Authors: Amna Kamal, Amna Kamal, Muhammad Adnan Iqbal, Muhammad Adnan Iqbal, Haq Nawaz Bhatti and Abdul Ghaffar, Haq Nawaz Bhatti and Abdul Ghaffar
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Alkyl-substituted azolium salts (1-8) and their Se-N-heterocyclic carbene (Se-N-Het-C) adducts (9-12) were obtained in very reasonable yields. All synthesized azolium salts and their Se-N-Het-C adducts were characterized by different spectroscopic techniques such as FT-IR, 1HNMR, 13CNMR, and elemental analysis. It was found that all synthesized Se-N-Het-C adducts were stable at room temperature in both air and moisture. In-vitro these compounds (5-12) were assessed for their antimicrobial potential against Bacillus subtilis (B. subtilis), Macrococcus brunensis (M. brunensis), and Bacillus cereus (B. cereus) in vitro. Results of MIC and inhibition zone values revealed that the majority of the Selenium N-Heterocyclic carbene adducts were active against Bacillus subtilis (B. subtilis) than Macrococcus brunensis (M. brunensis) and Bacillus cereus (B. cereus) whereas opposite in the azolium salts (5-8). Compounds 5-8 have an inhibition zone of 16and#177;0.1-26and#177;0.3mm against all tested bacterial strains while selenium-NHC adducts 9-12 have a zone of inhibition (16and#177;0.2 to 25 and#177; 0.4mm). Adduct 12 showed good activity against all tested strains with ZI values 25 and#177; 0.1, 22and#177; 0.5, 17 and#177; 0.3 mm and MIC values 17 and#177; 0.2, 16 and#177; 0.4 and 18 and#177; 0.3 and#181;g/mL against Bacillus subtilis (B. subtilis), Macrococcus brunensis (M. brunensis) and Bacillus cereus (B. cereus) respectively. Adduct 10 showed the highest thrombolysis i-e 86.9% and adduct 12 showed good hemolysis i-e 0.51%. Overall results of thrombolysis and cytotoxicity studies revealed that the compounds are safe for preclinical studies of mouse blood in vitro.
ISSN:0253-5106
DOI:10.52568/001198/JCSP/45.01.2023