Loading…

Development of near-infrared photoactivable phthalocyanine-loaded nanoparticles to kill tumor cells: An improved tool for photodynamic therapy of solid cancers

Abstract Conventional photodynamic therapy has shown to be beneficial in the treatment of a variety of tumors. However, one of its major limitations is the inadequate penetration depth of visible light. In order to overcome this constraint, we developed 80 nm poly-methylmethacrylate core-shell fluor...

Full description

Saved in:
Bibliographic Details
Published in:Nanomedicine 2016-10, Vol.12 (7), p.1885-1897
Main Authors: Duchi, Serena, PhD, Ramos-Romero, Sara, PhD, Dozza, Barbara, PhD, Guerra-Rebollo, Marta, PhD, Cattini, Luca, Ballestri, Marco, Dambruoso, Paolo, PhD, Guerrini, Andrea, Sotgiu, Giovanna, Varchi, Greta, PhD, Lucarelli, Enrico, MSc, Blanco, Jeronimo, PhD
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Conventional photodynamic therapy has shown to be beneficial in the treatment of a variety of tumors. However, one of its major limitations is the inadequate penetration depth of visible light. In order to overcome this constraint, we developed 80 nm poly-methylmethacrylate core-shell fluorescent nanoparticles (FNP) loaded with the photosensitizer tetrasulfonated aluminum phthalocyanine (Ptl). To demonstrate the efficacy of our Ptl@FNP we performed in vitro and in vivo studies using a human prostate tumor model. Our data reveal that Ptl@FNP are internalized by tumor cells, favour Ptl intracellular accumulation, and efficiently trigger cell death through the generation of ROS upon irradiation with 680 nm light. When directly injected into tumors intramuscularly induced in SCID mice, Ptl@FNP upon irradiation significantly reduce tumor growth with higher efficiency than the bare Ptl. Collectively, these results demonstrate that the newly developed nanoparticles may be utilized as a delivery system for antitumor phototherapy in solid cancers.
ISSN:1549-9634
1549-9642
DOI:10.1016/j.nano.2016.04.014