Droplet digital PCR for detection and quantification of circulating tumor DNA in plasma of head and neck cancer patients

During posttreatment surveillance of head and neck cancer patients, imaging is insufficiently accurate for the early detection of relapsing disease. Free circulating tumor DNA (ctDNA) may serve as a novel biomarker for monitoring tumor burden during posttreatment surveillance of these patients. In t...

Full description

Saved in:
Bibliographic Details
Published in:BMC cancer 2017-06, Vol.17 (1), p.428-428, Article 428
Main Authors: van Ginkel, Joost H, Huibers, Manon M H, van Es, Robert J J, de Bree, Remco, Willems, Stefan M
Format: Article
Language:eng
Subjects:
DNA
NMR
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:During posttreatment surveillance of head and neck cancer patients, imaging is insufficiently accurate for the early detection of relapsing disease. Free circulating tumor DNA (ctDNA) may serve as a novel biomarker for monitoring tumor burden during posttreatment surveillance of these patients. In this exploratory study, we investigated whether low level ctDNA in plasma of head and neck cancer patients can be detected using Droplet Digital PCR (ddPCR). TP53 mutations were determined in surgically resected primary tumor samples from six patients with high stage (II-IV), moderate to poorly differentiated head and neck squamous cell carcinoma (HNSCC). Subsequently, mutation specific ddPCR assays were designed. Pretreatment plasma samples from these patients were examined on the presence of ctDNA by ddPCR using the mutation-specific assays. The ddPCR results were evaluated alongside clinicopathological data. In all cases, plasma samples were found positive for targeted TP53 mutations in varying degrees (absolute quantification of 2.2-422 mutational copies/ml plasma). Mutations were detected in wild-type TP53 background templates of 7667-156,667 copies/ml plasma, yielding fractional abundances of down to 0.01%. Our results show that detection of tumor specific TP53 mutations in low level ctDNA from HNSCC patients using ddPCR is technically feasible and provide ground for future research on ctDNA quantification for the use of diagnostic biomarkers in the posttreatment surveillance of HNSCC patients.
ISSN:1471-2407
1471-2407